精英家教网 > 高中数学 > 题目详情

已知f(x+1)=x2-2x,则f(x)=       f(x-2)=     

f(x)=x2-4x+3,f(x-2)=x2-8x+15.

解析:令x+1=t,则xt-1,因此f(t)=(t-1)2-2(t-1)=t2-4t+3,即f(x)=x2-4x+3.∴f(x-2)=(x-2)2-4(x-2)+3=x2-8x+15.

练习册系列答案
相关习题

科目:高中数学 来源:学习周报 数学 人教课标高二版(A选修1-2) 2009-2010学年 第30期 总第186期 人教课标版(A选修1-2) 题型:013

已知f(x+1)=,f(1)=1,x∈N+,猜想f(x)的表达式为

[  ]
A.

f(x)=

B.

f(x)=

C.

f(x)=

D.

f(x)=

查看答案和解析>>

科目:高中数学 来源:吉林省白山市友好学校2012届高三12月联考数学理科试题 题型:013

已知f(x+1)=f(x-1),f(x)=f(-x+2),方程f(x)=0在[0,1]内有且只有一个根,则f(x)=0在区间[0,2011]内根的个数为

[  ]
A.

2011

B.

2010

C.

1006

D.

1005

查看答案和解析>>

科目:高中数学 来源:2010年高三年级秦皇岛市三区四县联考文科试题 题型:选择题

已知f(x)是定义在R上的偶函数,对任意的xR都有f(x+4)=f(x)+f(2)成立.若f(0)=0,f(1)=2,则f(1) +f(2)+f(3)+…+f(2007)的值等于( )

A.2007

B.2008

C.2009

D.2010

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河北省高三8月月考理科数学试卷(解析版) 题型:解答题

已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.

(1)求f(x)的解析式;

(2)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。第一问,利用函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中设切点为(x0,x03-3x0),因为过点A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分离参数∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函数求导数,判定单调性,从而得到要是有三解,则需要满足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依题意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)设切点为(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切线方程为y-(x03-3x0)=(3x02-3)(x-x0)

又切线过点A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

则g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)单调递减,(0,2)单调递增,(2,+∞)单调递减.

∴g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2

画出草图知,当-6<m<2时,m=-2x3+6x2-6有三解,

所以m的取值范围是(-6,2).

 

查看答案和解析>>

同步练习册答案