分析 (1)设数列{an}的公比为q,根据题意数列的公比,利用等比数列的通项公式,即可求解数列{an}的通项公式;
(2)由(1)得出bn=2n+5,${c_n}=\frac{1}{2}(\frac{1}{2n+5}-\frac{1}{2n+7})$,利用等差数列求和公式和裂项求和即可求解数列的和.
解答 解:(1)设数列{an}的公比为q,
由题意知3a4=S5-S3=a4+a5,∴a5=2a4,∴q=2.
∴${a_n}={a_1}•{q^{n-1}}={2^{n+2}}$.
(2)由(1)可得bn=n+2+n+3=2n+5,${c_n}=\frac{1}{(2n+5)(2n+7)}=\frac{1}{2}(\frac{1}{2n+5}-\frac{1}{2n+7})$,
∴数列{cn}的前n项和Tn=$\frac{1}{2}[(\frac{1}{7}-\frac{1}{9})+(\frac{1}{9}-\frac{1}{11})$+…+$(\frac{1}{2n+5}-\frac{1}{2n+7})]$=$\frac{n}{14n+49}$.
点评 本题考查了等差数列与等比数列的通项公式及其求和公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 6π | B. | $\sqrt{6}π$ | C. | $\frac{3}{2}π$ | D. | 24π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $2+\sqrt{3}$ | B. | $\sqrt{2+\sqrt{3}}$ | C. | 3 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 快、新、乐 | B. | 乐、新、快 | C. | 新、乐、快 | D. | 乐、快、新 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com