精英家教网 > 高中数学 > 题目详情

【题目】已知集合M={x|﹣2<x<2},N={x|x2﹣2x﹣3<0},则集合M∩N=(
A.{x|x<﹣2}
B.{x|x>3}
C.{x|﹣1<x<2}
D.{x|2<x<3}

【答案】C
【解析】解:对于集合N:x2﹣2x﹣3<0,化为(x﹣3)(x+1)<0,解得﹣1<x<3.
∴N={x|﹣1<x<3}.
∴集合M∩N={x|﹣2<x<2}∩{x|﹣1<x<3}={x|﹣1<x<2}.
故选C.
【考点精析】解答此题的关键在于理解集合的交集运算的相关知识,掌握交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立,以及对解一元二次不等式的理解,了解求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的导数.

(1)讨论函数的零点个数;

(2)若函数的定义域内不单调且在上单调递减,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,角A、B、C所对应的边为a,b,c. (I)若sin(A+ )= cosA,求A的值;
(Ⅱ)若cosA= ,b=3c,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设S表示所有大于﹣1的实数构成的集合,确定所有的函数:S→S,满足以下两个条件:
对于S内的所有x和y,f(x+f(y)+xf(y))=y+f(x)+yf(x);在区间﹣1<x<0与x>0的每一个内, 是严格递增的.求满足上述条件的函数的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】结合命题函数上是减函数;命题函数的值域为.

(Ⅰ)若为真命题,求实数的取值范围;

(Ⅱ)如果为真命题, 为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 2Sn=an+1﹣2n+1+1,n∈N* , 且a1 , a2+5,a3成等差数列.
(1)求a1
(2)证明 为等比数列,并求数列{an}的通项;
(3)设bn=log3(an+2n),且Tn= ,证明Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是等比数列,a1=2,a3=18.数列{bn}是等差数列,b1=2,b1+b2+b3+b4=a1+a2+a3>20.
(1)求数列{an},{bn}的通项公式;
(2)设Pn=b1+b4+b7+…+b3n2 , Qn=b10+b12+b14+…+b2n+8 , 其中n=1,2,3,….试比较Pn与Qn的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn , 且Sn=2n2+3n;
(1)求它的通项an
(2)若bn= ,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案