精英家教网 > 高中数学 > 题目详情

【题目】将函数图像向右平移个单位得到的图像,将函数图像向左平移个单位得到的图像,若令,则

)函数的最小正周期、单调递增区间;

)求在区间上的值域.

【答案】见解析

【解析】)由题意得:

……………………………2分

……………………………4分

函数的最小正周期为 ………………………………………5分

要求的单调递增区间,只需……………………………6分

解得

所以的单调递增区间为 …………………………………7分

)因为,所以 ……………………………………………8分

此时 ……………………………………………11分

在区间的值域为. ………………………………………12分

【命题意图】本题主要考查三角函数的恒等变换、三角函数的图象平移变换、三角函数的单调性及值域等,考查基本运算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若不存在极值点,求的取值范围;

(2)若,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (a>0,a≠1).
(1)判断函数f(x)的奇偶性;
(2)判断函数f(x)在(1,+∞)上的单调性,并给出证明;
(3)当x∈(n,a﹣2)时,函数f(x)的值域是(1,+∞),求实数a与n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是偶函数.

1)求的值;

2)设,若函数的图象有且只有一个公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是正项数列的前项和,满足.

)求数列通项公式

)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,向量分别为平面直角坐标内轴正方向上的单位向量,若向量 , ,

)求点的轨迹的方程;

)设椭圆,曲线的切线 交椭圆两点,试证:的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知极点与直角坐标系原点重合,极轴与轴的正半轴重合,曲线极坐标方程为.

(Ⅰ)求曲线的直角坐标方程;

(Ⅱ)已知直线的参数方程为为参数),直线交曲线两点,若恰好为线段的三等分点,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知离心率为的椭圆经过点,且是顶点均不与椭圆四个顶点重合的椭圆一个内接四边形.

(Ⅰ)求椭圆的方程;

(Ⅱ)若,试判断的面积是否为定值?若为定值,求出该定值;若不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是正数组成的数列, ,且点 在函数的图象上.

(1)求数列的通项公式;

(2)若列数满足,,求证:

查看答案和解析>>

同步练习册答案