精英家教网 > 高中数学 > 题目详情

【题目】已知函数F(x)=g(x)+h(x)=ex , 且g(x),h(x)分别是R上的偶函数和奇函数,若对任意的x∈(0,+∞),不等式g(2x)≥ah(x)恒成立,则实数a的取值范围是(
A.(﹣∞,2 ]
B.(﹣∞,2
C.(﹣∞,2]
D.(﹣∞,2)

【答案】A
【解析】解:∵函数F(x)=ex满足F(x)=g(x)+h(x),且g(x),h(x)分别是R上的偶函数和奇函数,
∴g(﹣x)=g(x),h(﹣x)=﹣h(x)
∴ex =g(x)+h(x),ex=g(x)﹣h(x),
∴g(x)= ,h(x)=
x∈(0,+∞),使得不等式g(2x)≥ah(x)恒成立,即 ≥a 恒成立,
∴a≤ =(ex﹣ex)+
设t=ex﹣ex , 则函数t=ex﹣ex在(0,+∞)上单调递增,
∴0<t,
此时 不等式t+ ≥2 ,当且仅当t= ,即t= 时,取等号,∴a≤2
故选:A.
【考点精析】通过灵活运用函数奇偶性的性质,掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知F1 , F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若△ABF2是正三角形,则这个椭圆的离心率是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长方体ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1点E,F,G分别是DD1 , AB,CC1的中点,则异面直线A1E与GF所成的角是(
A.90°
B.60°
C.45°
D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在定义域内既是奇函数又是减函数的是(
A.y=
B.y=﹣x+
C.y=﹣x|x|
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某服装厂生产一种服装,每件服装的成本为40元,出厂单价为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元,根据市场调查,销售商一次订购量不会超过500件.
(1)设一次订购量为x件,服装的实际出厂单价为P元,写出函数P=f(x)的表达式;
(2)当销售商一次订购多少件服装时,该服装厂获得的利润最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线x+ay﹣1=0是圆C:x2+y2﹣4x﹣2y+1=0的对称轴,过点A(﹣4,a)作圆C的一条切线,切点为B,则|AB|=(
A.2
B.6
C.4
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某消费品专卖店的经营资料显示如下:
①这种消费品的进价为每件14元;
②该店月销售量Q(百件)与销售价格P(元)满足的函数关系式为Q= ,点(14,22),(20,10),(26,1)在函数的图象上;
③每月需各种开支4400元.

(1)求月销量Q(百件)与销售价格P(元)的函数关系;
(2)当商品的价格为每件多少元时,月利润最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
(1)证明CD⊥AE;
(2)证明PD⊥平面ABE;
(3)求二面角A﹣PD﹣C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(ex+1)(ax+2a﹣2),若存在x∈(0,+∞),使得不等式f(x)﹣2<0成立,则实数a的取值范围是(
A.(0,1)
B.(0,
C.(﹣∞,1)
D.(﹣∞,

查看答案和解析>>

同步练习册答案