分析 (Ⅰ)令a=b=1,代入计算即可求得f(1)=0;令a=b=2,求得f(4)=-2,令a=4,b=$\frac{1}{4}$,即可得到所求值;
(Ⅱ)运用单调性的定义证明,注意运用条件可得$\frac{{x}_{2}}{{x}_{1}}$>1,即有f($\frac{{x}_{2}}{{x}_{1}}$)<0;
(Ⅲ)f(log4x)>2即为f(log4x)>$f(\frac{1}{4})$,由(Ⅱ)f(x)在(0,+∞)上是减函数,可得不等式组,解得即可得到所求集合.
解答 解:(Ⅰ)令a=b=1,可得2f(1)=f(1),
解得f(1)=0;
令a=b=2,可得2f(2)=f(4)=-2,
令a=4,b=$\frac{1}{4}$,可得f(4)+f($\frac{1}{4}$)=f(1)=0,
即有f($\frac{1}{4}$)=-f(4)=2;
(Ⅱ)证明:设x1,x2∈(0,+∞)且x1<x2,
可得$\frac{{x}_{2}}{{x}_{1}}$>1,即有f($\frac{{x}_{2}}{{x}_{1}}$)<0,
则f(x2)=f(x1•$\frac{{x}_{2}}{{x}_{1}}$)=f(x1)+f($\frac{{x}_{2}}{{x}_{1}}$)<f(x1),
∴f(x)在(0,+∞)上是减函数;
(Ⅲ)f(log4x)>2即为
f(log4x)>$f(\frac{1}{4})$,
由(Ⅱ)f(x)在(0,+∞)上是减函数
所以$\left\{\begin{array}{l}{log_4}x<\frac{1}{4}\\{log_4}x>0\end{array}\right.$,即为$\left\{\begin{array}{l}{0<x<\sqrt{2}}\\{x>1}\end{array}\right.$,
解得$1<x<\sqrt{2}$,
故不等式的解集为(1,$\sqrt{2}$).
点评 本题考查抽象函数的运用,考查赋值法求函数值的方法和运用单调性的定义证明得到,同时考查解不等式,注意运用单调性和函数的定义域,属于中档题和易错题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1组 | B. | 2组 | C. | 3组 | D. | 4组 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ${log_3}4>1>{log_{\frac{1}{3}}}10$ | B. | ${log_{\frac{1}{3}}}10>1>{log_3}4$ | ||
C. | ${log_3}4>{log_{\frac{1}{3}}}10>1$ | D. | ${log_{\frac{1}{3}}}10>{log_3}4>1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com