精英家教网 > 高中数学 > 题目详情

【题目】已知函数).

1)函数是否过定点?若是求出该定点,若不是,说明理由.

2)将函数的图象向下平移个单位,再向左平移个单位后得到函数,设函数的反函数为,求的解析式;

3)在(2)的基础上,若函数过点,且设函数的定义域为,若在其定义域内,不等式恒成立,求的取值范围.

【答案】1)过定点;(2);(3.

【解析】

1)在函数的解析式中,令指数为零,可求出该函数所过定点的坐标;

2)根据平移原则求出函数的解析式,然后再根据同底数的对数函数与指数函数互为反函数这一性质可得出函数的解析式;

3)将点代入函数的解析式得出,令,由,得出,利用函数单调性求出函数上的最大值,即可得出实数的取值范围.

1),令,得.

因此,函数的图象恒过定点

2)将函数的图象向下平移个单位,得到函数)的图象,再将所得函数的图象向左平移个单位,可得到函数)的图象.

因此,);

3)由题意得,得,则

时,.

,得

,则不等式对任意的恒成立,

对任意的恒成立,构造函数,其中.

则函数在区间上单调递增,则该函数的最大值为

,因此,实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD中,AD∥BCADAB∠BCD45°∠BAD90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成四面体ABCD,则在四面体ABCD中,下列结论正确的是( )

A. 平面ABD⊥平面ABC B. 平面ADC⊥平面BDC

C. 平面ABC⊥平面BDC D. 平面ADC⊥平面ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中, 底面 为线段上一点, 的中点.

(1)证明: 平面

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】太极图是由黑白两个鱼形纹组成的图案,太极图展现了一种相互转化,相互统一的和谐美.定义:能够将圆的周长和面积同时等分成两部分的函数称为圆的一个“太极函数”.下列有关说法中正确的个数是( )个

①对圆的所有非常数函数的太极函数中,一定不能为偶函数;

②函数是圆的一个太极函数;

③存在圆,使得是圆的太极函数;

④直线所对应的函数一定是圆的太极函数.

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为梯形,AD∥BC,CD⊥BC,AD=2,AB=BC=3,PA=4,M为AD的中点,N为PC上一点,且PC=3PN.

(1)求证:MN∥平面PAB;

(2)求二面角PANM的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数.

(1)当时, ,若当时, 恒成立,求的最小值;

(2)若的图像关于对称,且时, ,求当时, 的解析式;

(3)当时, .若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:“”,命题:“ ”.若命题“”是真命题,则实数的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高二年级组织成语听说大赛,每班选10名同学参赛,要求每位同学回答5个成语,各位同学的得分总和算作本班成绩,其中一班的张明同学参赛,他每道题答对的概率均为,且每道题答对与否互不影响.计分办法规定为答对不超过3个题时,每答对一个得一分,超过三个,每多答对一个得两分.

(1)求张明至少答对三道题的概率;

(2)设张明答完5道题得分为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数给出下列四个命题:

①c = 0时,是奇函数;时,方程只有一个实根;

的图象关于点(0 , c)对称; ④方程至多3个实根.

其中正确的命题个数是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案