精英家教网 > 高中数学 > 题目详情

已知定义在R上的偶函数f(x)在[0,+∞)上是增函数,且f(2)=1,若f(x+a)≤1对x∈[-1,1]恒成立,则实数a的取值范围是________.

解:∵f(x)是R上的偶函数,且f(2)=1,
∴f(2)=f(-2)=1;
∵f(x)在[0,+∞)上是增函数,f(x+a)≤1对x∈[-1,1]恒成立,
∴-2≤x+a≤2,
即-2-x≤a≤2-x在x∈[-1,1]上恒成立,
∴-1≤a≤1,
故答案为:[-1,1].
分析:先利用f(x)是R上的偶函数,且f(2)=1,得到f(2)=f(-2)=1;再由f(x)在[0,+∞)上是增函数,f(x+a)≤1对x∈[-1,1]恒成立,导出-2-x≤a≤2-x在x∈[-1,1]上恒成立,由此能求出实数a的取值范围.
点评:本题考查函数恒成立问题,解题时要认真审题,仔细解答,注意函数的奇偶性、单调性的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的不恒为零的函数,且对于任意实数a,b都有f(a•b)=af(b)+bf(a),则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知f(x)是定义在R上的不恒为零的函数,且对于任意实数a,b都有f(a•b)=af(b)+bf(a),则


  1. A.
    f(x)是奇函数,但不是偶函数
  2. B.
    f(x)是偶函数,但不是奇函数
  3. C.
    f(x)既是奇函数,又是偶函数
  4. D.
    f(x)既非奇函数,又非偶函

查看答案和解析>>

同步练习册答案