精英家教网 > 高中数学 > 题目详情

【题目】一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.

1)求所取3张卡片上的数字完全相同的概率;

2表示所取3张卡片上的数字的中位数,求的分布列与数学期望.

(注:若三个数满足,则称为这三个数的中位数).

【答案】12)详见解析.

【解析】

试题分析:(1)要先出基本事件的总数和所研究的事件包含的基本事件个数,然后代入古典概型概率计算公式即可,相对简单些;(2)应先根据题意求出随机变量X的所有可能取值,此处应注意所取三张卡片可能来自于相同数字(如12)或不同数字(121323三类)的卡片,因此应按卡片上的数字相同与否进行分类分析,然后计算出每个随机变量所对应事件的概率,最后将分布列以表格形式呈现

试题解析:(1

2的所有可能值为123,且

的分布列为


1

2

3





从而

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四边形ABCD中,∠BAD=120°,∠BCD=60°,cosD=﹣ ,AD=DC=2.
(Ⅰ)求cos∠DAC及AC的长;
(Ⅱ)求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的f(x)= sin(ωx+φ)(ω>0,﹣ )图象关于直线x= 对称,且图象上相邻两个最高点的距离为π,若 (0<α<π),则 =(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知随机变量X服从正态分布Nμσ2),且PμXμ)=0.954 4PμσXμσ)=0.682 6.μ4σ1,则P5X6)=( )

A. 0.135 9 B. 0.135 8 C. 0.271 8 D. 0.271 6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD= ,O为AC与BD的交点,E为棱PB上一点.
(Ⅰ)证明:平面EAC⊥平面PBD;
(Ⅱ)若PD∥平面EAC,求三棱锥P﹣EAD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小组6个人排队照相留念.

(1)若分成两排照相,前排2人,后排4人,有多少种不同的排法?

(2)若分成两排照相,前排2人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种排法?

(3)若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法?

(4)若排成一排照相,其中甲必在乙的右边,有多少种不同的排法?

(5)若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法?

(6)若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过点P(2,),且倾斜角α,曲线C (θ为参数),直线l与曲线C相交于不同的两点AB.

(1)写出直线的参数方程,及曲线C的普通方程;

(2)求线段AB的中点Q的坐标,及的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知P(x0 , y0)是椭圆C: =1上一点,过原点的斜率分别为k1 , k2的两条直线与圆(x﹣x02+(y﹣y02= 均相切,且交椭圆于A,B两点.

(1)求证:k1k2=﹣
(2)求|OA||OB|得最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)如果对于任意的,都有,求的取值范围.

查看答案和解析>>

同步练习册答案