精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)满足:对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;当x∈(1,2]时,f(x)=2﹣x.若f(a)=f(2020),则满足条件的最小的正实数a的值为(  )

A. 28 B. 100 C. 34 D. 36

【答案】D

【解析】

取x∈(2m,2m+1),则 ∈(1,2];f( )=2﹣,从而f(x)=2m+1﹣x,根据f(2020)=f(a)进行化简,设a∈(2m,2m+1)则f(a)=2m+1﹣a=28求出a的取值范围.

取x∈(2m,2m+1),则∈(1,2];f()=2﹣,从而

f(x)=2f()=…=2mf()=2m+1﹣x,其中,m=0,1,2,…,

f(2020)=210f()=211﹣2020=28=f(a),

设a∈(2m,2m+1)则f(a)=2m+1﹣a=28,

∴a=2m+1﹣28∈(2m,2m+1),

即m≥5,a≥36,

满足条件的最小的正实数a是36.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1
(1)求数列{bn}的通项公式;
(2)令cn= ,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在平面斜坐标系xOy中,xOy=60°,平面上任意一点P关于斜坐标系的斜坐标是这样定义的:若=xe1+ye2(其中e1,e2分别为x轴、y轴同方向的单位向量),则点P的斜坐标为(x,y).

(1)若点P在斜坐标系xOy中的斜坐标为(2,-2),求点P到原点O的距离.

(2)求以原点O为圆心,1为半径的圆在斜坐标系xOy中的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义在R上的函数,对任意实数x,有f(1﹣x)=x2﹣3x+3.

(1)求函数的解析式;

(2)若函数在g(x)=f(x)﹣(1+2m)x+1(mR)在上的最小值为﹣2,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若集合含有个元素,则实数的取值范围是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 数列{ }的公差为1的等差数列,且a2=3,a3=5.
(1)求数列{an}的通项公式;
(2)设bn=an3n , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下是新兵训练时,某炮兵连8周中炮弹对同一目标的命中情况的柱状图:
(1)计算该炮兵连这8周中总的命中频率p0 , 并确定第几周的命中频率最高;
(2)以(1)中的p0作为该炮兵连炮兵甲对同一目标的命中率,若每次发射相互独立,且炮兵甲发射3次,记命中的次数为X,求X的数学期望;
(3)以(1)中的p0作为该炮兵连炮兵对同一目标的命中率,试问至少要用多少枚这样的炮弹同时对该目标发射一次,才能使目标被击中的概率超过0.99?(取lg0.4=﹣0.398)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点轴上,离心率为,在椭圆上有一动点的距离之和为4,

(Ⅰ) 求椭圆E的方程;

(Ⅱ) 过作一个平行四边形,使顶点都在椭圆上,如图所示.判断四边形能否为菱形,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,离心率为,右焦点到直线的距离为2.

1)求椭圆的方程;

2)椭圆下顶点为,直线)与椭圆相交于不同的两点,当时,求的取值范围.

查看答案和解析>>

同步练习册答案