精英家教网 > 高中数学 > 题目详情
10.设x>2,则$y=x+\frac{4}{x-2}$的最小值是6.

分析 变形利用基本不等式的性质即可得出.

解答 解:∵x>2,则x-2>0,
∴$y=x+\frac{4}{x-2}$=x-2+$\frac{4}{x-2}$+2$≥2\sqrt{(x-2)•\frac{4}{x-2}}$+2=6,当且仅当x=4时取等号.
因此y的最小值是6.
故答案为:6.

点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知圆$C:{x^2}+{y^2}+2\sqrt{2}x-10=0$,点$A(\sqrt{2},0)$,P是圆上任意一点,线段AP的垂直平分线l和半径CP相交于点Q.
(Ⅰ)当点P在圆上运动时,求点Q的轨迹方程;
(Ⅱ)直线$y=kx+\sqrt{2}$与点Q的轨迹交于不同两点A和B,且$\overrightarrow{OA}•\overrightarrow{OB}=1$(其中O为坐标原点),求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数$y=\sqrt{{{log}_{\frac{1}{2}}}{x^2}}$的单调递增区间是[-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=ax2+2ax+4(-3<a<0),其图象上两点的横坐标为x1、x&2满足x1<x2,且x1+x2=1+a,则由(  )
A.f(x1)<f(x2B.f(x1)=f(x2
C.f(x1)>f(x2D.f(x1)、f(x&2)的大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=x2-9,$g(x)=\frac{x}{x-3}$,那么f(x)•g(x)=x2+3x (x≠3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.判断函数f(x)=$\frac{{\sqrt{{x^2}+1}+x-1}}{{\sqrt{{x^2}+1}+x+1}}$的奇偶性(  )
A.奇函数B.偶函数
C.既是奇函数又是偶函数D.非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.一个高为H,容积为V的鱼缸的轴截面如图所示,向鱼缸里注水,若鱼缸里的水面高度为h时,鱼缸里的水的体积为V',则函数V'=f(h)的大致图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.定义在R上的函数f(x),满足f(x+y)=f(x)+f(y)(x,y∈R),且f(1)=2,那么下面四个式子:
①f(1)+2f(1)+…+nf(1);
②$f[\frac{n(n+1)}{2}]$;
③n(n+1);
④n(n+1)f(1)
其中与f(1)+f(2)+…+f(n)(n∈N*)相等的是(  )
A.①③B.①②C.①②③④D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,四边形ABCD为矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于点F,且点F在CE上.
(1)求证:DE⊥BE;
(2)求四棱锥E-ABCD的体积.

查看答案和解析>>

同步练习册答案