精英家教网 > 高中数学 > 题目详情

求以两直线的交点为圆心,且与x轴相切的圆的标准方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似三角形,则称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比.已知椭圆C1
x2
a2
+
y2
b2
=1
以抛物线y2=4
3
x
的焦点为一个焦点,且椭圆上任意一点到两焦点的距离之和为4.(1)若椭圆C2与椭圆C1相似,且相似比为2,求椭圆C2的方程.
(2)已知点P(m,n)(mn≠0)是椭圆C1上的任一点,若点Q是直线y=nx与抛物线x2=
1
mn
y
异于原点的交点,证明点Q一定落在双曲线4x2-4y2=1上.
(3)已知直线l:y=x+1,与椭圆C1相似且短半轴长为b的椭圆为Cb,是否存在正方形ABCD,使得A,C在直线l上,B,D在曲线Cb上,若存在求出函数f(b)=SABCD的解析式及定义域,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0
(1)求证:对m∈R,直线l与C总有两个不同的交点;
(2)设l与C交于A、B两点,若|AB|=
17
,求l的方程;
(3)若l与圆C交于A、B两点且以AB为直径的圆过坐标原点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:044

求以两直线的交点为圆心,且与x轴相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

求以两直线的交点为圆心,且与x轴相切的圆的方程.

查看答案和解析>>

同步练习册答案