精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)(12x)m(14x)n (mnN*)的展开式中含x项的系数为36,求展开式中含x2项的系数最小值.

【答案】272

【解析】

利用二项式求出的系数,得出的关系,再求出的系数,结合二次函数的性质可求得最小值.

:(12x)m(14x)n展开式中含x的项为·2x·4x(24)x

2436,即m2n18

(12x)m(14x)n展开式中含x2项的系数为

t22422m22m8n28n

m2n18,∴m182n

t2(182n)22(182n)8n28n

16n2148n612

16

∴当n时,t取最小值,但nN*

n5时,tx2项的系数最小,最小值为272.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列中,.又数列满足:.

1)求证:数列是等比数列;

2)若数列是单调递增数列,求实数a的取值范围;

3)若数列的各项皆为正数,设是数列的前n和,问:是否存在整数a,使得数列是单调递减数列?若存在,求出整数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在集合中,任取个元素构成集合. 若的所有元素之和为偶数,则称的偶子集,其个数记为;若的所有元素之和为奇数,则称的奇子集,其个数记为. 令

(1)当 时,求的值;

(2)求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,且的图像连续不间断,若函数满足:对于给定的实数,存在,使得,则称具有性质.

1)已知函数,判断是否具有性质,并说明理由;

2)求证:任取,函数具有性质

3)已知函数,若具有性质,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

1)求函数的单调区间;

2)当时,对任意的,存在,使得成立,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,圆C1和C2的参数方程分别是(φ为参数)和(φ为参数),以O为极点,x轴的正半轴为极轴建立极坐标系.

(1)求圆C1和C2的极坐标方程;

(2)射线OM:θ=a与圆C1的交点为O、P,与圆C2的交点为O、Q,求|OP||OQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题ABC的三个内角构成等差数列,则ABC必有一内角为的否命题( )

A.与原命题真假相异B.与原命题真假相同

C.与原命题的逆否命题的真假不同D.与原命题的逆命题真假相异

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在抛物线上,点是抛物线的焦点,线段的中点为.

(1)若点的坐标为,且的垂心,求直线的方程;

(2)若点是直线上的动点,且,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“绿水青山就是金山银山”,“建设美丽中国”已成为新时代中国特色社会主义生态文明建设的重要内容,某班在一次研学旅行活动中,为了解某苗圃基地的柏树幼苗生长情况,在这些树苗中随机抽取了120株测量高度(单位:),经统计,树苗的高度均在区间内,将其按分成6组,制成如图所示的频率分布直方图.据当地柏树苗生长规律,高度不低于的为优质树苗.

(1)求图中的值;

(2)已知所抽取的这120株树苗来自于两个试验区,部分数据如下列联表:

试验区

试验区

合计

优质树苗

20

非优质树苗

60

合计

将列联表补充完整,并判断是否有99.9%的把握认为优质树苗与两个试验区有关系,并说明理由;

(3)通过用分层抽样方法从试验区被选中的树苗中抽取5株,若从这5株树苗中随机抽取2株,求优质树苗和非优质树苗各有1株的概率.

附:参考公式与参考数据:

其中

0.010

0.005

0.001

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案