精英家教网 > 高中数学 > 题目详情

【题目】如图,是某景区的两条道路(宽度忽略不计,为东西方向),Q为景区内一景点,A为道路上一游客休息区,已知(百米),Q到直线的距离分别为3(百米),(百米),现新修一条自A经过Q的有轨观光直路并延伸至道路于点B,并在B处修建一游客休息区.

1)求有轨观光直路的长;

2)已知在景点Q的正北方6百米的P处有一大型组合音乐喷泉,喷泉表演一次的时长为9分钟,表演时,喷泉喷洒区域以P为圆心,r为半径变化,且t分钟时,(百米)(.当喷泉表演开始时,一观光车S(大小忽略不计)正从休息区B沿(1)中的轨道(百米/分钟)的速度开往休息区A,问:观光车在行驶途中是否会被喷泉喷洒到,并说明理由.

【答案】1;(2)喷泉的水流不会洒到观光车上,理由见解析

【解析】

1)建立如图平面直角坐标系,易得,直线的方程为,由点到直线距离,求出,从而直线的方程为,联产方程组求出的坐标,由此能求出轨道的长;

2)将喷泉记为圆,由题意得,生成分钟时,观光车在线段AB上的点C处,则,从而,若喷泉不会洒到观光车上,则恒成立,由此能求出喷泉的水流不会洒到观光车上.

1)以点O为坐标原点,直线x轴,建立平面直角坐标系,如图所示.

则由题设得:,直线的方程为.

,解得,所以.

故直线的方程为

,故

答:水上旅游线的长为.

2)将喷泉记为圆P,由题意可得

生成t分钟时,观光车在线段上的点C处,

,所以.

若喷泉不会洒到观光车上,则恒成立,

时,上式成立,

时,,当且仅当时取等号,

因为,所以恒成立,即喷泉的水流不会洒到观光车上.

答:喷泉的水流不会洒到观光车上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于圆周率,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请120名同学每人随机写下一个xy都小于1的正实数对,再统计其中xy能与1构成钝角三角形三边的数对的个数m,最后根据统计个数m估计的值.如果统计结果是,那么可以估计的值为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:椭圆的离心率为,且,过左焦点作一条直线交椭圆于两点,过线段的中点的垂线交轴于点.

1)求椭圆方程;

2)当面积最大时,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”。“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸未,甲申、乙酉、丙戌…癸巳,…,共得到60个组合,称六十甲子,周而复始,无穷无尽。2019年是“干支纪年法”中的己亥年,那么2026年是“干支纪年法”中的

A. 甲辰年B. 乙巳年C. 丙午年D. 丁未年

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我市为迎接一项重要的体育赛事,要完成两座场馆的地基建造工程.某工程队需要把600名工人分成两组,一组完成场馆的甲级标准地基2000,同时另一组完成场馆的乙级标准地基3000;据测算,完成甲级标准地基每平方米的工程量为50天,完成乙级标准地基每平方米的工程量为30.

1)若工程队分配名工人去场馆,求场馆地基和场馆地基建造时间(单位:天)的函数解析式;

2两个场馆同时开工,该工程队如何分配两个场馆的工人数量,可以使得工期最短.

(参考数据:.备注:若地基面积为平方米,每平方米的工程量为/天,工人数人,则工期为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)讨论函数的单调性;

2)若,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求曲线的普通方程和的直角坐标方程;

2)过点作倾斜角为的直线两点,过作与平行的直线点,若,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标xOy中,以O为极点,x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为.

1)求椭圆的直角坐标方程;

2)已知过的直线与椭圆C交于AB两点,且两点与左右顶点不重合,若,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,倾斜角为的直线的参数方程为(其中为参数).在以为极点、轴的非负半轴为极轴的极坐标系(两种坐标系的单位长度相同)中,曲线的焦点的极坐标为.

1)求常数的值;

2)设交于两点,且,求的大小.

查看答案和解析>>

同步练习册答案