精英家教网 > 高中数学 > 题目详情
函数f(x)与g(x)互为反函数,且g(x)=logax,若f(x)在[-1,1]上的最大值比最小值大2,则a的值为
2
+1或
2
-1
2
+1或
2
-1
分析:求出函数的反函数,利用f(x)在[-1,1]上的最大值比最小值大2,得到a的方程,求出a的值即可.
解答:解:函数f(x)与g(x)互为反函数,且g(x)=logax,
所以f(x)=ax.它是单调函数,
因为f(x)在[-1,1]上的最大值比最小值大2,
所以|a-a-1|=2,a>0,且a≠1.
当a∈(0,1)时,方程化为a2+2a-1=0,
解得a=
2
-1

当a∈(1,+∞)时,方程化为a2-2a-1=0,
解得a=
2
+1

综上,a=
2
+1
2
-1

故答案为:
2
+1
2
-1
点评:本题考查反函数,指数函数的单调性,函数值的求法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)与g(x)的定义域均为{1,2,3},且满足f(1)=f(3)=1,f(2)=3,g(x)+x=4,则满足f[g(x)]>g[f(x)]的x的值
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在区间[m,n]上的两个函数f(x)和g(x),如果对任意的x∈[m,n],均有不等式|f(x)-g(x)|≤1成立,则称函数f(x)与g(x)在[m,n]上是“友好”的,否则称“不友好”的.现在有两个函数f(x)=loga(x-3a)与g(x)=loga
1x-a
(a>0,a≠1),给定区间[a+2,a+3].
(1)若f(x)与g(x)在区间[a+2,a+3]上都有意义,求a的取值范围;
(2)讨论函数f(x)与g(x)在区间[a+2,a+3]上是否“友好”.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•东城区三模)对于在区间[m,n]上有意义的两个函数f(x)与g(x),如果对于任意x∈[m,n],均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[m,n]上是接近的.若函数y=x2-2x+3与函数y=3x-2在区间[m,n]上是接近的,给出如下区间①[1,4]②[1,3]③[1,2]∪[3,4]④[1,
32
]∪[3,4]
,则区间[m,n]可以是
③、④
③、④
.(把你认为正确的序号都填上)

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案