精英家教网 > 高中数学 > 题目详情
14.过点(2,3)且与x轴垂直的直线方程为x-2=0.

分析 根据题意,画出图形,结合图形即可得出直线的方程.

解答 解:如图所示,
过点(2,3)且与x轴垂直的直线方程,斜率不存在,
所以该直线的方程为x=2,即x-2=0.
故答案为:x-2=0.

点评 本题考查了求直线方程的应用问题,也考查了数形结合思想的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.非零向量 $\overrightarrow{a}$,$\overrightarrow{b}$夹角为120°,且|$\overrightarrow{a}$-$\overrightarrow{b}$|=2,则|$\overrightarrow{a}$+$\overrightarrow{b}$|的取值范围为(  )
A.[1,$\sqrt{3}$]B.[2,$\frac{4\sqrt{3}}{3}$]C.[$\frac{2\sqrt{3}}{3}$,4)D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知m,n∈R,函数f(x)=ln(x+m)的图象与函数g(x)=ex-1+n的图象在x=1处有公共的切线.
(1)求m,n的值;
(2)设b>a>0,求证:$\sqrt{ab}<\frac{b-a}{f(b)-f(a)}<\frac{a+b}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆C:(x-3)2+(y-2)2=2,直线l:3x+4y-12=0,直线l与圆C相交于M、N两点,求直线l被圆C所截得的弦长MN.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设Sn是等差数列{an}的前n项和,S6=21且S15=120,则$\frac{{S}_{n}+20}{{a}_{n}+1}$的最小值是$\frac{35}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求过点P(3,5),且在两条坐标轴上截距相等的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知角α的终边在如图所示的阴影部分内,试指出角α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若平面α∥平面β,l?α,则l与β的位置关系是(  )
A.l与β相交B.l与β平行C.l在β内D.无法判定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.命题“?x>0,x2-1<0”的否定是?x>0,x2-1≥0.

查看答案和解析>>

同步练习册答案