【题目】设f(x)是定义域为R的偶函数,且f(x+3)=f(x-1),若当x∈[-2,0]时,f(x)=2-x,记,,c=f(32),则a,b,c的大小关系为( )
A.B.C.D.
科目:高中数学 来源: 题型:
【题目】已知某种气垫船的最大航速是海里小时,船每小时使用的燃料费用和船速的平方成正比.若船速为海里小时,则船每小时的燃料费用为元,其余费用(不论船速为多少)都是每小时元。甲乙两地相距海里,船从甲地匀速航行到乙地.
(1)试把船从甲地到乙地所需的总费用,表示为船速(海里小时)的函数,并指出函数的定义域;
(2)当船速为每小时多少海里时,船从甲地到乙地所需的总费用最少?最少费用为多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数有两个不同零点、(),设函数的定义域为,且的最大值记为,最小值记为.
(1)求(用表示);
(2)当时,试问以、、为长度的线段能否组成一个三角形,如果不一定,进一步求出的取值范围,使它们能组成一个三角形;
(3)求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,为了测量A、B处岛屿的距离,小海在D处观测,A、B分别在D处的北偏西15°、北偏东45°方向,再往正东方向行驶20海里至C处,观测B在C处的正北方向,A在C处的北偏西45°方向,则A、B两岛屿的距高为___________海里.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,函数g(x)=-2x+3.
(1)当a=2时,求f(x)的极值;
(2)讨论函数的单调性;
(3)若-2≤a≤-1,对任意x1,x2∈[1,2],不等式|f(x1)-f(x2)|≤t|g(x1)-g(x2)|恒成立,求实数t的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆的左、右焦点分别为、,以线段为直径的圆与椭圆交于点.
(1)求椭圆的方程;
(2)过轴正半轴上一点作斜率为的直线.
①若与圆和椭圆都相切,求实数的值;
②直线在轴左侧交圆于、两点,与椭圆交于点、(从上到下依次为、、、),且,求实数的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm2
(1)若广告商要求包装盒侧面积S(cm)最大,试问x应取何值?
(2)若广告商要求包装盒容积V(cm)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马中,侧棱底面,且,点是 的中点,连接、、.
(1)证明:平面;
(2)证明:平面.试判断四面体是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;
(3)记阳马的体积为,四面体的体积为,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com