精英家教网 > 高中数学 > 题目详情
已知函数:f(x)=asin2x+cos2x且f(
π
3
)=
3
-1
2

(1)求a的值和f(x)的最大值;
(2)求f(x)的单调减区间.
考点:三角函数的最值,正弦函数的单调性
专题:常规题型,三角函数的图像与性质
分析:(1)把x=
π
3
代入函数f(x)的解析式即可求得a值,然后把f(x)的解析式利用两角和的正弦公式化成标准形式求f)x)的最大值;(2)根据正弦函数的单调减区间求函数f(x)的单调减区间.
解答: 解:(1)∵f(
π
3
)=asin
3
+cos
3

=
3
2
a
-
1
2
=
3
-1
2

∴a=1
f(x)=sin2x+cos2x=
2
sin(2x+
π
4

∴函数f(x)的最大值为
2

(2)由2kπ+
π
2
≤2x+
π
4
≤2kπ+
2
(k∈Z)
得:kπ+
π
8
≤x≤kπ+
8
(k∈Z)
∴函数f(x)的单调减区间为[kπ+
π
8
,kπ+
8
].
点评:本题考查了求三角函数的最值和单调区间问题,解题的关键是把函数化成标准形式,然后根据正弦函数的最值和单调性求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图是调查某地某公司1000名员工的月收入后制作的直方图.根据直方图估计:
(1)该公司月收入在1000元到1500元之间的人数;
(2)该公司员工的月平均收入;
(3)该公司员工收入的众数;
(4)该公司员工月收入的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0,m∈R,当直线l被圆C截得的弦长最短时的m的值是(  )
A、-
3
4
B、-
1
3
C、-
4
3
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,是一问题的程序框图,输出的结果是1716,则设定循环控制条件(整数)是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设满足以下两个条件的有穷数列a1,a2,…,an为n(n=2,3,4,…)阶“期待数列”:
①a1+a2+…+an=0;②|a1|+|a2|+…+|an|=1.
(Ⅰ)分别写出一个单调递增的3阶和4阶“期待数列”;
(Ⅱ)若等比数列{an}为2014阶“期待数列”,求公比q的值;
(Ⅲ)若一个等差数列{an}既是2k(k∈N*)阶“期待数列”又是递增数列,求该数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2
x2-2x+1
-3
x2-6x+9
(x∈R)

(1)画出函数f(x)的图象;
(2)利用函数的图象求不等式f(x)≥2的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

若ab>0,则下列四个等式:
①lg(ab)=lga+lgb
②lg(
a
b
)=lga-lgb
1
2
lg(
a
b
2=lg(
a
b

④lg(ab)=
1
logab10
中正确等式的符号是(  )
A、①②③④B、①②C、③④D、③

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,Sn是数列{an}的前n项和,a1+a6+a11=4π,则sin(S11)的值为(  )
A、
3
2
B、±
3
2
C、
1
2
D、-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若在定义域内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立,则称函数有“飘移点”x0
(1)函数f(x)=
1
x
是否有“飘移点”?请说明理由;
(2)证明函数f(x)=x2+2x在(0,1)上有“飘移点”;
(3)若函数f(x)=lg(
a
x2+1
)在(0,+∞)上有“飘移点”,求实数a的取值范围.

查看答案和解析>>

同步练习册答案