【题目】已知
(1)求函数在区间上的最小值;
(2)对一切实数恒成立,求实数的取值范围;
(3)证明:对一切, 恒成立.
【答案】(1);(2)4;(3)见解析.
【解析】试题分析:(1)求出,分三种情况讨论,分别令 得增区间, 得减区间,从而可得函数在区间上的最小值;(2)等价于,只需以即可;(3)问题等价于证明,由的最小值是, 最大值为.
试题解析:(1),当, , 单调递减,当, ,
单调递增.············ 2分
①,t无解;
②,即时,
③,即时, 在上单调递增,
所以.········· 5分
(2),则,
设,则,
, , 单调递增, , ,
单调递减,所以,因为对一切, 恒成立,
所以;
(3)问题等价于证明,
由⑴可知的最小值是,当且仅当时取到,
设,则,易得,当且仅当时取到,从而对一切,都有成立.
科目:高中数学 来源: 题型:
【题目】已知如图,六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABCDEF.则下列结论不正确的是( )
A. CD∥平面PAF
B. DF⊥平面PAF
C. CF∥平面PAB
D. CF⊥平面PAD
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;
(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值.(精确到1辆/小时).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程为(其中为参数),现以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.
(1)写出直线和曲线的普通方程;
(2)已知点为曲线上的动点,求到直线的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体ABCD-A1B1C1D1中,P,M,N分别为棱DD1,AB,BC的中点.
(1)求二面角B1-MN-B的正切值.
(2)求证:PB⊥平面MNB1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2017唐山模拟】如图,ABCDA1B1C1D1为正方体,连接BD,AC1,B1D1,CD1,B1C,现有以下几个结论:①BD∥平面CB1D1;②AC1⊥平面CB1D1;③AC1与底面ABCD所成角的正切值是;④CB1与BD为异面直线,其中所有正确结论的序号为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com