精英家教网 > 高中数学 > 题目详情
(2012•东城区一模)已知x=1是函数f(x)=(ax-2)ex的一个极值点.(a∈R)
(Ⅰ)求a的值;
(Ⅱ)当x1,x2∈[0,2]时,证明:f(x1)-f(x2)≤e.
分析:(I)先求出函数f(x)的导函数,然后根据在极值点处的导数等于0,建立等式关系,求出a即可;
(II)确定函数f(x)在区间[0,2]上的最大值与最小值,从而f(x1)-f(x2)≤fmax(x)-fmin(x),由此可得到结论.
解答:(Ⅰ)解:已知f′(x)=(ax+a-2)ex,f'(1)=0,∴a=1.
当a=1时,f′(x)=(x-1)ex,在x=1处取得极小值.
(Ⅱ)证明:由(Ⅰ)知,f(x)=(x-2)ex,f′(x)=(x-1)ex
当x∈[0,1]时,f′(x)=(x-1)ex≤0,∴f(x)在区间[0,1]单调递减;
当x∈(1,2]时,f′(x)=(x-2)ex>0,∴f(x)在区间(1,2]单调递增.
所以在区间[0,2]上,f(x)的最小值为f(1)=-e,又f(0)=-2,f(2)=0,
所以在区间[0,2]上,f(x)的最大值为f(2)=0.
对于x1,x2∈[0,2],有f(x1)-f(x2)≤fmax(x)-fmin(x).
所以f(x1)-f(x2)≤0-(-e)=e.
点评:本题综合考查函数的极值以及利用导数研究函数的单调性,同时考查函数的最值的求解,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•东城区一模)已知x,y,z∈R,若-1,x,y,z,-3成等比数列,则xyz的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区一模)已知函数f(x)=(x-a)(x-b)(其中a>b),若f(x)的图象如图所示,则函数g(x)=ax+b的图象大致为.(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区一模)在如图所示的茎叶图中,乙组数据的中位数是
84
84
;若从甲、乙两组数据中分别去掉一个最大数和一个最小数后,两组数据的平均数中较大的一组是
组.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区一模)如图1,在边长为3的正三角形ABC中,E,F,P分别为AB,AC,BC上的点,且满足AE=FC=CP=1.将△AEF沿EF折起到△A1EF的位置,使平面A1EF⊥平面EFB,连接A1B,A1P.(如图2)
(Ⅰ)若Q为A1B中点,求证:PQ∥平面A1EF;
(Ⅱ)求证:A1E⊥EP.

查看答案和解析>>

同步练习册答案
闂傚倸鍊烽懗鑸电仚婵°倗濮寸换姗€鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾诲┑鐘叉搐缁狀垶鏌ㄩ悤鍌涘