【题目】给出下列四个命题:
①已知M={(x,y)| =3},N={(x,y)|ax+2y+a=0}且M∩N=,则a=﹣6;
②已知点A(x1 , y1),B(x2 , y2),则以AB为直径的圆的方程是(x﹣x1)(x﹣x2)+(y﹣y1)(y﹣y2)=0;
③ =1(a≠b)表示焦点在x轴上的椭圆;
④已知抛物线y2=2px(p>0)的焦点弦AB的两端点坐标分别为A(x1 , y2),B(x2 , y2),则 =﹣4
其中的真命题是 . (把你认为是真命题的序号都填上)
【答案】②④
【解析】解:对于 ①, =3中x≠2,不过点(2,3),把点(2,3)代入ax+2y+a=0,a=﹣2,故错;
对于②,设圆上任意一点P(x,y),有 ,可得圆的方程(x﹣x1)(x﹣x2)+(y﹣y1)(y﹣y2)=0,故正确;
对于③,a≠b时,椭圆焦点在x、y轴上均可能,还有可能是椭圆,故错;
对于④,设直线AB的方程为x=my+ 代入y2=2px,可得y2﹣2pmy﹣p2=0,由韦达定理得,y1y2=﹣p2 . ∵y12=2px1、y22=2px2∴,x1x2= p2
则 =﹣4,故正确.
故答案:②④
【考点精析】认真审题,首先需要了解命题的真假判断与应用(两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系).
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|x|x+bx+c,给出下列4个命题:
①b=0,c>0时,方程f(x)=0只有一个实数根;
②c=0时,y=f(x)是奇函数;
③y=f(x)的图象关于点(0,c)对称;
④方程f(x)=0至多有2个不相等的实数根.
上述命题中的所有正确命题的序号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知全集U为R,集合A={x|0<x≤2},B={x|x<﹣3,或x>1}
求:(I)A∩B;
(II)(CUA)∩(CUB);
(III)CU(A∪B).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在数列{an}中,已知a1=1,a2=2,an+2= (k∈N*).
(1)求数列{an}的通项公式;
(2)求满足2an+1=an+an+2的正整数n的值;
(3)设数列{an}的前n项和为Sn , 问是否存在正整数m,n,使得S2n=mS2n﹣1?若存在,求出所有的正整数对(m,n);若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设非空集合s={x|m≤x≤l}满足:当x∈S时,有y=x2∈S.给出如下三个命题:
①若m=1,则S={1};
②若m=﹣ ,则 ≤l≤1;
③若l= ,则﹣ ≤m≤0.
④若l=1,则﹣1≤m≤0或m=1.
其中正确命题的是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数集A={a1 , a2…an}(0≤a1<a2…<an , n≥2)具有性质P;对任意的 i,j(1≤i≤j≤n),ai+aj与aj﹣ai两数中至少有一个属于A.
(1)分别判断数集{0,1,3,4}与{0,2,3,6}是否具有性质P,并说明理由;
(2)证明:a1=0,且nan=2(a1+a2+a+..+an)
(3)当n=5时若 a2=2,求集合A.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A,B满足,集合A={x|x=7k+3,k∈N},B={x|x=7k﹣4,k∈Z},则A,B两个集合的关系:AB(横线上填入,或=)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直线x+y=1与双曲线 =1 (a>0,b>0)交于M、N两点,若以M、N两点为直径的圆经过坐标原点O.
(1)求 的值;
(2)若0<a≤ ,求双曲线离心率e的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2017江西4月质检】已知椭圆的离心率为,且过点.
(1)求椭圆的方程;
(2)过点且斜率大于0的直线与椭圆相交于点,,直线,与轴相交于,两点,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com