精英家教网 > 高中数学 > 题目详情

【题目】若一个四位数的各位数字相加和为,则称该数为“完美四位数”,如数字“”.试问用数字组成的无重复数字且大于的“完美四位数”有( )个

A. B. C. D.

【答案】D

【解析】由题设中提供的信息可知:和为10四位数字分别是(0,1,2,7),(0,1,3,6),(0,1,4,5)(0,2,3,5),(1,2,3,4)共五组;其中第一组(0,1,2,7)中,7排首位有种情形,2排首位,1、7排在第二位上时,有种情形,2排首位,0排第二位,7排第三位有1种情形,共种情形符合题设;第二、三组中3,、6与4、5分别排首位各有种情形,共有种情形符合题设;第四、五组中2、3、5与2、3、4分别排首位各有种情形,共有种情形符合题设。依据分类计数原理可符合题设条件的完美四位数共有种,应选答案D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给定函数和常数,若恒成立,则称()为函数的一个好数对”,已知函数的定义域为.

1)若(11)是函数的一个好数对,且,求

2)若(20)是函数的一个好数对,且当时,,判断方程在区间[1,8]上根的个数;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题中,其中错误的个数是()

①经过球面上任意两点,可以作且只可以作一个大圆;

②经过球直径的三等分点,作垂直于该直径的两个平面,则这两个平面把球面分成三部分的面积相等;

③球的面积是它大圆面积的四倍;

④球面上两点的球面距离,是这两点所在截面圆上,以这两点为端点的劣弧的长.

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)的定义域为(0,+∞),且对一切x>0,y>0都有ff(x)-f(y),当x>1时,有f(x)>0。

(1)求f(1)的值;

(2)判断f(x)的单调性并证明;

(3)若f(6)=1,解不等式f(x+3)-f<2;

(4)若f(4)=2,求f(x)在[1,16]上的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直角坐标系xoy中,曲线 (:y=kx (x),以坐标原点为极点,x轴正半轴为极轴建立坐标系,曲线的极坐标方程为:.

(1)的直角坐标方程。

(2)曲线交于点B,求A、B两点的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)=2x.

(1)f(x)=,求x的值;

(2)2tf(2t)+mf(t)≥0对于t[1,2]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确命题的个数是

(1)对分类变量的随机变量的观测值来说,越小,判断“有关系”的把握越大;

(2)若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变;

(3)在残差图,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高;

(4)设随机变量服从正态分布

,则( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求的最大值和最小值;

2)求实数的取值范围,使在区间上是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,点也为抛物线的焦点.(1)若为椭圆上两点,且线段的中点为,求直线的斜率;

(2)若过椭圆的右焦点作两条互相垂直的直线分别交椭圆于,设线段的长分别为,证明是定值.

查看答案和解析>>

同步练习册答案