已知f(x)=ex-ax-1.
(1)求f(x)的单调增区间;
(2)若f(x)在定义域R内单调递增,求a的取值范围.
(1)当a≤0时,f(x)的单调增区间为(-∞,+∞);当a>0时,f(x)的单调增区间为(ln a,+∞).(2)(-∞,0]
【解析】(1)∵f(x)=ex-ax-1(x∈R),∴f′(x)=ex-a.令f′(x)≥0,得ex≥a.当a≤0时,f′(x)>0在R上恒成立;当a>0时,有x≥ln a.综上,当a≤0时,f(x)的单调增区间为(-∞,+∞);当a>0时,f(x)的单调增区间为(ln a,+∞).
(2)由(1)知f′(x)=ex-a.∵f(x)在R上单调递增,
∴f′(x)=ex-a≥0恒成立,即a≤ex在R上恒成立.
∵x∈R时,ex>0,∴a≤0,
即a的取值范围是(-∞,0].
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用阶段检测1练习卷(解析版) 题型:填空题
若a>1,设函数f(x)=ax+x-4的零点为m,函数g(x)=logax+x-4的零点为n,则+的最小值为________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用7练习卷(解析版) 题型:填空题
已知tan β=,sin(α+β)=,其中α,β∈(0,π),则sin α的值为________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用5练习卷(解析版) 题型:解答题
已知x=3是函数f(x)=aln(1+x)+x2-10x的一个极值点.
(1)求a;
(2)求函数f(x)的单调区间;
(3)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用5练习卷(解析版) 题型:填空题
下面四个图象中,有一个是函数f(x)=x3+ax2+(a2-1)x+1(a∈R)的导函数y=f′(x)图象,则f(-1)等于________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用4练习卷(解析版) 题型:填空题
已知函数f(x)=x3+ax2+x+2(a>0)的极大值点和极小值点都在区间(-1,1)内,则实数a的取值范围是______.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用3练习卷(解析版) 题型:填空题
给定区域D:令点集T={(x0,y0)∈D|x0,y0∈Z,(x0,y0)是z=x+y在D上取得最大值或最小值的点},则T中的点共确定________条不同的直线.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com