精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系(),点为曲线上的动点,点在线段的延长线上,且满足,点的轨迹为

(Ⅰ)求的极坐标方程;

(Ⅱ)设点的极坐标为,求面积的最小值。

【答案】(Ⅰ) :;:(Ⅱ)2

【解析】

(1)由曲线C1的参数方程能求出曲线C1的普通方程,由此能求出曲线C的极坐标方程;设点B的极坐标为(ρ,θ),点A的极坐标为(ρ0,θ0),则|OB|=ρ,|OA|=ρ0,ρ0=2cosθ0,θ=θ0,从而ρρ0=8,由此能求出C2的极坐标方程.

(2)由|OC|=2,SABCSOBCSOAC|OC||ρBcosθ﹣ρAcosθ|=|4﹣2cos2θ|,由此能求出SABC的最小值.

(1)∵曲线C1的参数方程为(α为参数),

∴曲线C1的普通方程为x2+y2﹣2x=0,

∴曲线C的极坐标方程为ρ=2cosθ,

设点B的极坐标为(ρ,θ),点A的极坐标为(ρ0,θ0),

则|OB|=ρ,|OA|=ρ0,ρ0=2cosθ0,θ=θ0

∵|OA||OB|=8,∴ρρ0=8,

,ρcosθ=4,

C2的极坐标方程为ρcosθ=4.

(2)由题设知|OC|=2,

SABCSOBCSOAC|OC||ρBcosθ﹣ρAcosθ|=|4﹣2cos2θ|,

θ=0时,SABC取得最小值为2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系内的动点P到直线的距离与到点的距离比为

1)求动点P所在曲线E的方程;

2)设点Q为曲线E轴正半轴的交点,过坐标原点O作直线,与曲线E相交于异于点的不同两点,点C满足,直线分别与以C为圆心,为半径的圆相交于点A和点B,求△QAC与△QBC的面积之比的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求不等式的解集;

(2)若不等式对任意的恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=,下列结论中错误的是

A. , f()=0

B. 函数y=f(x)的图像是中心对称图形

C. f(x)的极小值点,则f(x)在区间(-∞,)单调递减

D. fx)的极值点,则()=0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点F,过F的直线与抛物线交于A,B两点,则的最小值是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】黄平县且兰高中全体师生努力下,有效进行了一对一辅导战略成绩提高了一倍,下列是优秀学生中等学生差生进行一对一前后所占比例

战略前

战略后

优秀学生

中等学生

差生

优秀学生

中等学生

差生

20%

50%

30%

25%

45%

30%

则下列结论正确的是(

A.实行一对一辅导战略,差生成绩并没有提高.

B.实行一对一辅导战略,中等生成绩反而下降了.

C.实行一对一辅导战略,优秀学生成绩提高了.

D.实行一对一辅导战略,优秀学生与中等生的成绩没有发生改变.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)写出函数的图象经过的一个定点的坐标,并求图象在点处的切线方程;

(2)若函数对任意的恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱中,

求证:面

,在线段上是否存在一点,使二面角的平面角的余弦值为?若存在,确定点的位置;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给图中ABCDEF六个区域进行染色,每个区域只染一种颜色,且相邻的区域不同色.若有4种颜色可供选择,则共有___种不同的染色方案.

查看答案和解析>>

同步练习册答案