精英家教网 > 高中数学 > 题目详情
11、用1,2,3,4,5五个数字共可组成
24
个无重复数字的三位偶数.
分析:由题意知本题要组成无重复数字的三位偶数,受限制的元素是最后一位,最后一位数字要从2和4中选出,其余数字在另外两个位置进行排列即可.
解答:解:∵要组成无重复数字的三位偶数,
∴最后一位数字要从2和4中选出,
其余数字在另外两个位置进行排列,共有C21A42=24种结果,
故答案为:24
点评:数字问题是排列中的一大类问题,条件变换多样,把排列问题包含在数字问题中,解题的关键是看清题目的实质,很多题目要分类讨论,要做到不重不漏.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、[理]用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

用1,2,3,4,5,6组成数字不重复的六位数,满足1不在左右两端,2,4,6三个偶数中,有且只有两个偶数相邻,则这样的六位数的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

用1,2,3,4,5这五个数字组成没有重复数字的三位数,其中奇数共有
36
36
个.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

用1,2,3,4,5这5个数字组成无重复数字的五位数,其中2,3相邻的偶数有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广东模拟)用1、2、3、4、5、6组成一个无重复数字的六位数,要求三个奇数1、3、5有且只有两个相邻,则不同的排法种数为
432
432

查看答案和解析>>

同步练习册答案