精英家教网 > 高中数学 > 题目详情

【题目】已知,函数.

(1)当时,解不等式

(2)若关于的方程的解集中恰有一个元素,求的取值范围;

(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.

【答案】1.(2.(3

【解析】试题分析:(1)当时,解对数不等式即可;(2)根据对数的运算法则进行化简,转化为一元二次方程,讨论的取值范围进行求解即可;(3)根据条件得到,恒成立,利用换元法进行转化,结合对勾函数的单调性进行求解即可.

试题解析:(1)由,得,解得

2

时, ,经检验,满足题意.

时, ,经检验,满足题意.

时,

是原方程的解当且仅当,即

是原方程的解当且仅当,即

于是满足题意的.综上, 的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某中学为了了解全校学生的上网情况,在全校采用随机抽样的方法抽取了40名学生其中男女生人数恰好各占一半进行问卷调查,并进行了统计,按男女分为两组,再将每组学生的月上网次数分为5组:,得到如图所示的频率分布直方图:

写出的值;

在抽取的40名学生中,从月上网次数不少于20次的学生中随机抽取3人 ,并用表示其中男生的人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数

(1)时,求曲线的切线方程;

(2)时,若对任意不等式成立,求实数取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高二奥赛班名学生的物理测评成绩满分120分分布直方图如下,已知分数在100-110的学生数有21人

1求总人数和分数在110-115分的人数

2现准备从分数在110-115的名学生女生占中任选3人,求其中恰好含有一名女生的概率;

3为了分析某个学生的学习状态,对其下一阶段的学生提供指导性建议,对他前7次考试的数学成绩满分150分,物理成绩进行分析,下面是该生7次考试的成绩

数学

88

83

117

92

108

100

112

物理

94

91

108

96

104

101

106

已知该生的物理成绩与数学成绩是线性相关的,若该生的数学成绩达到130分,请你估计他的物理成绩大约是多少?

附:对于一组数据……,其回归线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一块半径为的正常数)的半圆形空地,开发商计划征地建一个矩形的游泳池和其附属设施,附属设施占地形状是等腰,其中为圆心, 在圆的直径上, 在半圆周上,如图.

(1)设,征地面积为,求的表达式,并写出定义域;

(2)当满足取得最大值时,开发效果最佳,求出开发效果最佳的角的值,

求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在坐标原点,焦点在轴上的椭圆,离心率为且过点,过定点的动直线与该椭圆相交于两点.

(1)若线段中点的横坐标是,求直线的方程;

(2)在轴上是否存在点,使为常数?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实数,且,

(1)求方程的解; (2)若满足,求证:①; (3)在(2)的条件下,求证:由关系式所得到的关于的方程存在,使

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 底面,底面是直角梯形,

1)在上确定一点,使得平面,并求的值;

2)在(1)条件下,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,底面是直角梯形,

(1)在上确定一点,使得平面,并求的值;

(2)在(1)条件下,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案