【题目】已知是边长为2的等边三角形,,当三棱锥体积最大时,其外接球的表面积为__________.
科目:高中数学 来源: 题型:
【题目】正方形沿对角线折成直二面角,下列结论:①与所成的角为:②与所成的角为:③与面所成角的正弦值为:④二面角的平面角正切值是:其中正确结论的个数为( )
A.4B.3C.2D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知鸡的产蛋量与鸡舍的温度有关,为了确定下一个时段鸡舍的控制温度,某企业需要了解鸡舍的温度(单位:℃),对某种鸡的时段产蛋量(单位: )和时段投入成本(单位:万元)的影响,为此,该企业收集了7个鸡舍的时段控制温度和产蛋量的数据,对数据初步处理后得到了如图所示的散点图和表中的统计量的值.
17.40 | 82.30 | 3.6 | 140 | 9.7 | 2935.1 | 35.0 |
其中.
(1)根据散点图判断, 与哪一个更适宜作为该种鸡的时段产蛋量关于鸡舍时段控制温度的回归方程类型?(给判断即可,不必说明理由)
(2)若用作为回归方程模型,根据表中数据,建立关于的回归方程;
(3)已知时段投入成本与的关系为,当时段控制温度为28℃时,鸡的时段产蛋量及时段投入成本的预报值分别是多少?
附:①对于一组具有有线性相关关系的数据,其回归直线的斜率和截距的最小二乘估计分别为
②
0.08 | 0.47 | 2.72 | 20.09 | 1096.63 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(Ⅰ)求证:D1E⊥A1D;
(Ⅱ)在棱AB上是否存在点E使得AD1与平面D1EC成的角为?若存在,求出AE的长,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于无穷数列,若正整数,使得当时,有,则称为“不减数列”.
(1)设,均为正整数,且,甲:为“不减数列”,乙:为“不减数列”.试判断命题:“甲是乙的充分条件”的真假,并说明理由;
(2)已知函数与函数的图象关于直线对称,数列满足,,如果为“不减数列”,试求的最小值;
(3)对于(2)中的,设,且.是否存在实数使得为“不减数列”?若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为选拔A,B两名选手参加某项比赛,在选拔测试期间,他们参加选拔的5次测试成绩(满分100分)记录如下:
(1)从A,B两人的成绩中各随机抽取一个,求B的成绩比A低的概率;
(2)从统计学的角度考虑,你认为选派哪位选手参加比赛更合适?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com