【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了200人进行抽样分析,得到下表(单位:人):
经常使用 | 偶尔或不用 | 合计 | |
30岁及以下 | 70 | 30 | 100 |
30岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?
(2)现从所有抽取的30岁以上的网民中利用分层抽样抽取5人,
求这5人中经常使用、偶尔或不用共享单车的人数;
从这5人中,在随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.
参考公式: ,其中.
() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1)见解析(2)①见解析②.
【解析】试题分析:(1)计算k2,与2.027比较大小得出结论,
(2)(i)根据分层抽样即可求出,
(ii)设这5人中,经常使用共享单车的3人分别为a,b,c;偶尔或不用共享单车的2人分别为d,e,根据古典概率公式计算即可.
试题解析:
(1)由列联表可知, .
因为,
所以能在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关.
(2)(i)依题意可知,所抽取的5名30岁以上的网友中,经常使用共享单车的有(人),偶尔或不用共享单车的有(人).
(ii)设这5人中,经常使用共享单车的3人分别为, , ;偶尔或不用共享单车的2人分别为, .则从5人中选出2人的所有可能结果为, , , , , , , , , 共10种.
其中没有1人经常使用共享单车的可能结果为共1种,
故选出的2人中至少有1人经常使用共享单车的概率.
科目:高中数学 来源: 题型:
【题目】已知全集U={1,2,3,4,5,6,7},集合A={1,3,7},B={x|x=log2(a+1),a∈A},则A∩B=( )
A.{1,3}
B.{5,6}
C.{4,5,6}
D.{4,5,6,7}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以平面直角坐标系的原点为极点, 轴正半轴为极轴建立极坐标系,已知圆的极坐标方程为,直线的参数方程为(为参数),若与交于两点.
(Ⅰ)求圆的直角坐标方程;
(Ⅱ)设,求的值.
【答案】(1);(2)1.
【解析】试题分析:(1)先根据 将圆的极坐标方程化为直角坐标方程;(2)先将直线参数方程调整化简,再将直线参数方程代入圆直角坐标方程,根据参数几何意义得,最后利用韦达定理求解
试题解析:(Ⅰ)由,得,
(Ⅱ)把,
代入上式得,
∴,则, ,
.
【题型】解答题
【结束】
23
【题目】证明:(Ⅰ)已知是正实数,且.求证: ;
(Ⅱ)已知,且, , .求证: 中至少有一个是负数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的离心率 ,过点A(0,﹣b)和B(a,0)的直线与原点的距离为 .
(1)求椭圆的方程;
(2)已知定点E(﹣1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点,问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下关于圆锥曲线的命题中
①设是两个定点, 为非零常数,若,则动点的轨迹为双曲线的一支;②过定圆上一定点作圆的动弦, 为坐标原点,若,则动点的轨迹为椭圆;③方程的两根可分别作为椭圆和双曲线的离心率;④双曲线与椭圆有相同的焦点.
其中真命题的序号是_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一种大型商品,A,B两地都有出售,且价格相同,某地居民从两地之一购得商品后,运回的费用是:每单位距离A地的运费是B地运费的3倍.已知A,B两地相距10 km,顾客选A或B地购买这件商品的标准是:包括运费和价格的总费用较低.求A,B两地的售货区域的分界线的曲线形状,并指出曲线上、曲线内、曲线外的居民应如何选择购货地点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com