精英家教网 > 高中数学 > 题目详情

【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了200人进行抽样分析,得到下表(单位:人):

经常使用

偶尔或不用

合计

30岁及以下

70

30

100

30岁以上

60

40

100

合计

130

70

200

(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?

(2)现从所有抽取的30岁以上的网民中利用分层抽样抽取5人,

求这5人中经常使用、偶尔或不用共享单车的人数;

从这5人中,在随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.

参考公式: ,其中.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

【答案】(1)见解析2见解析.

【解析】试题分析:(1)计算k2,与2.027比较大小得出结论,

(2)(i)根据分层抽样即可求出,

(ii)设这5人中,经常使用共享单车的3人分别为a,b,c;偶尔或不用共享单车的2人分别为d,e,根据古典概率公式计算即可.

试题解析:

(1)由列联表可知, .

因为

所以能在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关.

2)(i)依题意可知,所抽取的5名30岁以上的网友中,经常使用共享单车的有(人),偶尔或不用共享单车的有(人).

ii)设这5人中,经常使用共享单车的3人分别为 ;偶尔或不用共享单车的2人分别为 .则从5人中选出2人的所有可能结果为 共10种.

其中没有1人经常使用共享单车的可能结果为共1种,

故选出的2人中至少有1人经常使用共享单车的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若关于的不等式恰好有4个整数解,则实数的取值范围是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U={1,2,3,4,5,6,7},集合A={1,3,7},B={x|x=log2(a+1),a∈A},则A∩B=(
A.{1,3}
B.{5,6}
C.{4,5,6}
D.{4,5,6,7}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)已知是奇函数,求常数m的值;

(2)画出函数的图象,并利用图象回答:k为何值时,方程 无解?有一解?有两解?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点, 轴正半轴为极轴建立极坐标系已知圆的极坐标方程为直线的参数方程为为参数),若交于两点.

(Ⅰ)求圆的直角坐标方程

(Ⅱ)设的值.

【答案】(1);(2)1.

【解析】试题分析:(1)先根据 将圆的极坐标方程化为直角坐标方程(2)先将直线参数方程调整化简,再将直线参数方程代入圆直角坐标方程,根据参数几何意义得,最后利用韦达定理求解

试题解析:(Ⅰ)由,得

(Ⅱ)把

代入上式得

,则

.

型】解答
束】
23

【题目】证明:(Ⅰ)已知是正实数.求证

(Ⅱ)已知 .求证 中至少有一个是负数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是公差不为0的等差数列, 成等比数列.

(1)求数列{an}的通项公式;

(2)设,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率 ,过点A(0,﹣b)和B(a,0)的直线与原点的距离为
(1)求椭圆的方程;
(2)已知定点E(﹣1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点,问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下关于圆锥曲线的命题中

①设是两个定点, 为非零常数,若,则动点的轨迹为双曲线的一支;②过定圆上一定点作圆的动弦 为坐标原点,若,则动点的轨迹为椭圆;③方程的两根可分别作为椭圆和双曲线的离心率;④双曲线与椭圆有相同的焦点.

其中真命题的序号是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一种大型商品,A,B两地都有出售,且价格相同,某地居民从两地之一购得商品后,运回的费用是:每单位距离A地的运费是B地运费的3倍.已知A,B两地相距10 km,顾客选A或B地购买这件商品的标准是:包括运费和价格的总费用较低.求A,B两地的售货区域的分界线的曲线形状,并指出曲线上、曲线内、曲线外的居民应如何选择购货地点.

查看答案和解析>>

同步练习册答案