精英家教网 > 高中数学 > 题目详情

【题目】为了评估A,B两家快递公司的服务质量,从两家公司的客户中各随机抽取100名客户作为样本,进行服务质量满意度调查,将A,B两公司的调查得分分别绘制成频率分布表和频率分布直方图.规定分以下为对该公司服务质量不满意.

分组

频数

频率

0.4

合计

(Ⅰ)求样本中对B公司的服务质量不满意的客户人数;

(Ⅱ)现从样本对A,B两个公司服务质量不满意的客户中,随机抽取2名进行走访,求这两名客户都来自于B公司的概率;

(Ⅲ)根据样本数据,试对两个公司的服务质量进行评价,并阐述理由.

【答案】(Ⅰ)3人;(Ⅱ)0.3;(Ⅲ)见解析

【解析】

(Ⅰ)对B公司的服务质量不满意的频率为,即概率为0.03,易求解。(Ⅱ)共有5名客服不满意,将每种情况都列出来即可算出全来自于B公司的概率。

(Ⅲ)可通过频率对比,服务质量得分的众数,服务质量得70分(或80分)以上的频率几个方面进行对比。

(Ⅰ)样本中对B公司的服务质量不满意的频率为

所以样本中对B公司的服务质量不满意的客户有人.

(Ⅱ)设“这两名客户都来自于B公司”为事件M

A公司的服务质量不满意的客户有2人,分别记为

B公司的服务质量不满意的客户有3人,分别记为

现从这5名客户中随机抽取2名客户,不同的抽取的方法有

10个;

其中都来自于B公司的抽取方法有3个,

所以 所以这两名客户都来自于B公司的概率为

(Ⅲ)答案一:由样本数据可以估计客户对A公司的服务质量不满意的频比对B公司服务质量不满意的频率小,由此推断A公司的服务质量比B公司的服务质量好.

答案二:由样本数据可以估计A公司的服务质量得分的众数与B公司服务质量得分的众数相同,由此推断A公司的服务质量与B公司的服务质量相同.

答案三:由样本数据可以估计A公司的服务质量得70分(或80分)以上的频率比B公司得70分(或80分)以上的频率小,由此推断A公司的服务质量比B公司的服务质量差.

答案四:由样本数据可以估计A公司的服务质量得分的平均分比B公司服务质量得分的平均分低,由此推断A公司的服务质量比B公司的服务质量差.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在某次测试中,卷面满分为100分,考生得分为整数,规定60分及以上为及格.某调研课题小组为了调查午休对考生复习效果的影响,对午休和不午休的考生进行了测试成绩的统计,数据如下表:

分数段

0~39

40~49

50~59

60~69

70~79

80~89

90~100

午休考生人数

29

34

37

29

23

18

10

不午休考生人数

20

52

68

30

15

12

3

(1)根据上述表格完成下列列联表:

及格人数

不及格人数

合计

午休

不午休

合计

(2)判断“能否在犯错误的概率不超过0.010的前提下认为成绩及格与午休有关”?

0.10

0.05

0.010

0.001

2.706

3.841

6.635

10.828

(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An , 第n项之后各项an+1 , an+2…的最小值记为Bn , dn=An﹣Bn
(1)若{an}为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n∈N* , an+4=an),写出d1 , d2 , d3 , d4的值;
(2)设d是非负整数,证明:dn=﹣d(n=1,2,3…)的充分必要条件为{an}是公差为d的等差数列;
(3)证明:若a1=2,dn=1(n=1,2,3,…),则{an}的项只能是1或者2,且有无穷多项为1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位实行职工值夜班制度,已知名职工每星期一到星期五都要值一次夜班,且没有两人同时值夜班,星期六和星期日不值夜班,若昨天值夜班,从今天起至少连续天不值夜班,星期四值夜班,则今天是星期几(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,现给出如下结论:

.

其中正确结论的序号为(

A. ②③ B. ①④ C. ②④ D. ①③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设四面体的六条棱的长分别为1,1,1,1, 和a,且长为a的棱与长为 的棱异面,则a的取值范围是(
A.(0,
B.(0,
C.(1,
D.(1,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+bln x在x=1处有极值.

(1)求a,b的值;

(2)求函数y=f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问110名性别不同的中学生是否爱好运动,得到如下的列联表:

总计

爱好

40

20

60

不爱好

20

30

50

总计

60

50

110

得,

0.050

0.010

0.001

3.841

6.635

10.828

参照附表,得到的正确结论是 ( )

A. 在犯错误的概率不超过0.001的前提下,认为爱好运动与性别有关

B. 在犯错误的概率不超过0.01的前提下,认为爱好运动与性别有关

C. 在犯错误的概率不超过0.001的前提下,认为爱好运动与性别无关

D. 以上的把握认为爱好运动与性别无关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市调研考试后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为

优秀

非优秀

合计

甲班

10

乙班

30

合计

110

(1)请完成上面的列联表;

(2)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”;

(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.

参考公式及数据:

查看答案和解析>>

同步练习册答案