精英家教网 > 高中数学 > 题目详情

【题目】某学校课外兴趣小组利用假期到植物园开展社会实践活动,研究某种植物生长情况与温度的关系.现收集了该种植物月生长量ycm)与月平均气温x(℃)的8组数据,并制成如图所示的散点图.

根据收集到的数据,计算得到如下值:

18

12.325

224.04

235.96

1)求出y关于x的线性回归方程(最终结果的系数精确到0.01),并求温度为28℃时月生长量y的预报值;

2)根据y关于x的回归方程,得到残差图如图所示,分析该回归方程的拟合效果.

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.

【答案】122.77cm;(2)答案见解析.

【解析】

1)代入公式求,得到,再将代入计算;

2)根据残差图的特征分析即可.

1)设月生长量y与月平均气温x之间的线性回归方程为.

所以

y关于x的线性回归方程为

时,cm.

所以,在气温在28℃时,该植物月生长量的预报值为22.77cm.

2)根据残差图,残差对应的点比较均匀地落在水平的带状区域中,且带状区域的宽度窄,该回归方程的预报精度相应会较高,说明拟合效果较好

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】高铁是我国国家名片之一,高铁的修建凝聚着中国人的智慧与汗水.如图所示,BEF为山脚两侧共线的三点,在山顶A处测得这三点的俯角分别为,计划沿直线BF开通穿山隧道,现已测得BCDEEF三段线段的长度分别为312.

(1)求出线段AE的长度;

(2)求出隧道CD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的内角的对边分别为.为线段上一点,,有下列条件:

;②;③.

请从以上三个条件中任选两个,求的大小和的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的首项a1=1,前n项和为Sn.设λk是常数,若对一切正整数n,均有成立,则称此数列为“λ~k数列.

1)若等差数列“λ~1”数列,求λ的值;

2)若数列数列,且an0,求数列的通项公式;

3)对于给定的λ,是否存在三个不同的数列“λ~3”数列,且an≥0?若存在,求λ的取值范围;若不存在,说明理由,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,在等腰梯形中,.,交于点.沿线段折起,使得点在平面内的投影恰好是点,如图.

1)若点为棱上任意一点,证明:平面平面.

2)在棱上是否存在一点,使得三棱锥的体积为?若存在,确定点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称粽子,古称角黍,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为____;若该六面体内有一球,则该球体积的最大值为____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是直角梯形,,且的中点.

(1)求证:平面平面

(2)若二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线处切线的斜率为,判断函数的单调性;

2)若函数有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数,则下列说法正确的是( )

A.,则的图象上存在唯一一对关于原点对称的点

B.存在实数使得的图象上存在两对关于原点对称的点

C.不存在实数使得的图象上存在两对关于轴对称的点

D.的图象上存在关于轴对称的点,则

查看答案和解析>>

同步练习册答案