(本小题满分12分)
已知函数(,实数,为常数).
(Ⅰ)若,求在处的切线方程;
(Ⅱ)若,讨论函数的单调性.
本小题主要考查导函数的求法、导数的几何意义、函数单调区间的求法,考查运用基本概念进行论证和计算的能力.满分12分.
〖解析〗
(Ⅰ)因为,所以函数,
又,………………………………………………2分
所以
即在处的切线方程为…………………………………5分
(Ⅱ)因为,所以,则
令,得,.……………………………………………7分
(1)当,即时,函数的单调递减区间为,
单调递增区间为;…………………………………………8分
(2)当,即时,,的变化情况如下表:
|
|
|
|
|
|
|
|
|
|
|
|
所以,函数的单调递增区间为,,
单调递减区间为;…………………………9分
(3)当,即时,函数的单调递增区间为;………10分
(4)当,即时,,的变化情况如下表:
|
|
|
|
|
|
|
|
|
|
|
|
所以函数的单调递增区间为,,
单调递减区间为;……………………………………11分
综上,当时,函数的单调递减区间为,单调递增区间为;当时,函数的单调递增区间为,,单调递减区间为;当时,函数的单调递增区间为;当时,函数的单调递增区间为,,单调递减区间为.…………………………12分
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com