精英家教网 > 高中数学 > 题目详情

【题目】对于数列,若存在正数p,使得对任意都成立,则称数列为“拟等比数列”.

已知,若数列满足:

,求的取值范围;

求证:数列是“拟等比数列”;

已知等差数列的首项为,公差为d,前n项和为,若,且是“拟等比数列”,求p的取值范围请用d表示

【答案】(1)详见解析;(2).

【解析】

即可求出结果;

根据题中“拟等比数列”的定义,由,结合条件推出存在正数,使得有成立即可;

由题中条件,先求出的范围;再根据是“拟等比数列”,分类讨论,即可得出结果.

解:,且

由题意得

时,

对任意,都有

即存在,使得有

数列数列是“拟等比数列”;

,从而解得

是“拟等比数列”,故存在,使得成立,

时,

由图象可知时递减,故

时,

由图象可知时递减,故

p的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】考虑的方格表,其中每个方格内均填有数字0.每次操作可先选定三个实数,然后选定一行,将这一行每个方格中的数都加上为该方格所在的列数,);或选定一列,将这一列每个方格中的数都加上为该方格所在的行数,),能否经过有限次操作,使该方格表中四个角的数字变成1,而其他格的数字仍为0?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】外接圆上三段弧的中点依次为,其关于的对称点依次为.若顶点与对应旁切圆切点的连线交于一点 (界心),的垂心证明:在以为直径的圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次会操活动中,领操员让编号为名学生排成一个圆形阵,做循环报数,领操员一一记录报数者的编号,并要求报l、2的学生出列,报3的学生留在队列中,并将编号改为此次循环报数中三名学生的编号之和.一直循环报数下去.当操场上剩余的学生人数不超过两名时,报数活动结束.领操员记录最后留在操场的学生编号例如,编号为的九名学生排成一个圆形阵,报数结束后,只有原始编号为9的学生留在操场,此时,他的编号为45,领操员记录下来的数据分别为l,2,3,4,5,6,7,8,9,6,15,24,45).已知共有2011名学生参加会操.

(1)最后留在场内的学生最初的编号是几号?

(2)求领操员记录下的编号之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为抗击新冠病毒,某部门安排甲、乙、丙、丁、戊五名专家到三地指导防疫工作.因工作需要,每地至少需安排一名专家,其中甲、乙两名专家必须安排在同一地工作,丙、丁两名专家不能安排在同一地工作,则不同的分配方法总数为(

A.18B.24C.30D.36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列叙述正确的是(

A.相关关系是一种确定性关系,一般可分为正相关和负相关

B.回归直线一定过样本点的中心

C.在回归分析中,0.98的模型比0.80的模型拟合的效果好

D.某同学研究卖出的热饮杯数与气温的关系,得到回归方程,则气温为2℃时,一定可卖出142杯热饮

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2022年北京冬奥运动会即第24届冬季奥林匹克运动会将在2022年2月4日至2月20日在北京和张家口举行,某研究机构为了了解大学生对冰壶运动的兴趣,随机从某大学生中抽取了120人进行调查,经统计男生与女生的人数比为11:13,男生中有30人表示对冰壶运动有兴趣,女生中有15人对冰壶运动没有兴趣.

(1)完成列联表,并判断能否有99%的把握认为“对冰壶运动是否有兴趣与性别有关”?

有兴趣

没有兴趣

合计

30

15

合计

120

(2)用分层抽样的方法从样本中对冰壶运动有兴趣的学生中抽取8人,求抽取的男生和女生分别为多少人?若从这8人中选取两人作为冰壶运动的宣传员,求选取的2人中恰好有1位男生和1位女生的概率.

附:,其中n=a+b+c+d

P

0.150

0.100

0.050

0.025

0.010

2.072

2.076

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】l为曲线C在点处的切线.

1)求l的方程;

2)证明:除切点之外,曲线C在直线l的下方;

3)求证:(其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列事件是随机事件的是(  )

x>10时,xRx2+x0有解

aR关于x的方程x2+a0在实数集内有解;sinα>sinβ时,α>β

A.①②B.②③C.③④D.①④

查看答案和解析>>

同步练习册答案