精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C上的点到右焦点F的最大距离为,离心率为

求椭圆C的方程;

如图,过点的动直线l交椭圆CMN两点,直线l的斜率为A为椭圆上的一点,直线OA的斜率为,且B是线段OA延长线上一点,且过原点O作以B为圆心,以为半径的圆B的切线,切点为,求取值范围.

【答案】(1);(2)

【解析】

依题,结合离心率求得ac的值,再由隐含条件求得b,则椭圆方程可求;

由已知可得直线l的方程,与椭圆C联立,化为关于x的一元二次方程,利用弦长公式求得弦,写出OA所在直线方程,与椭C联立求得,得到,利用换元法求得的范围,把转化为含的代数式求解.

依题

解得

椭圆C的方程为

由已知可得直线l的方程为:,与椭圆C联立,

,由题意

,则

OA所在直线方程为,与椭C联立,解得

,则

得到

,由知,,换元得:

,其中

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知以椭圆的焦点和短轴端点为顶点的四边形恰好是面积为4的正方形.

(1)求椭圆的方程;

(2)直线与椭圆交于异于椭圆顶点的两点,为坐标原点,直线与椭圆的另一个交点为点,直线和直线的斜率之积为1,直线轴交于点.若直线的斜率分别为,试判断是否为定值,若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着社会的进步与发展,中国的网民数量急剧增加.下表是中国从年网民人数及互联网普及率、手机网民人数(单位:亿)及手机网民普及率的相关数据.

年份

网民人数

互联网普及率

手机网民人数

手机网民普及率

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

(互联网普及率(网民人数/人口总数)×100%;手机网民普及率(手机网民人数/人口总数)×100%

(Ⅰ)从这十年中随机选取一年,求该年手机网民人数占网民总人数比值超过80%的概率;

(Ⅱ)分别从网民人数超过6亿的年份中任选两年,记为手机网民普及率超过50%的年数,求的分布列及数学期望;

(Ⅲ)若记年中国网民人数的方差为,手机网民人数的方差为,试判断的大小关系.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20175月,来自一带一路沿线的20国青年评选出了中国的新四大发明:高铁、扫码支付、共享单车和网购.乘坐高铁可以网络购票,为了研究网络购票人群的年龄分布情况,在531日重庆到成都高铁9600名网络购票的乘客中随机抽取了120人进行了统计并记录,按年龄段将数据分成6组:,得到如下直方图:

1)试通过直方图,估计531日当天网络购票的9600名乘客年龄的中位数;

2)若在调查的且年龄在段乘客中随机抽取两人,求两人均来自同一年龄段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某精准扶贫帮扶单位,为帮助定点扶贫村真正脱贫,坚持扶贫同扶智相结合,帮助精准扶贫户利用互联网电商渠道销售当地特产苹果.苹果单果直径不同单价不同,为了更好的销售,现从该精准扶贫户种植的苹果树上随机摘下了50个苹果测量其直径,经统计,其单果直径分布在区间[50,95]内(单位:),统计的茎叶图如图所示:

(Ⅰ)按分层抽样的方法从单果直径落在[80,85),[85,90)的苹果中随机抽取6个,再从这6个苹果中随机抽取2个,求这两个苹果单果直径均在[85,90)内的概率;

(Ⅱ)以此茎叶图中单果直径出现的频率代表概率.已知该精准扶贫户有20000个约5000千克苹果待出售,某电商提出两种收购方案:

方案:所有苹果均以5.5元/千克收购;

方案:按苹果单果直径大小分3类装箱收购,每箱装25个苹果,定价收购方式为:单果直径 在[50,65)内按35元/箱收购,在[65,90)内按50元/箱收购,在[90,95]内按35元/箱收购.包装箱与分拣装箱工费为5元/箱.请你通过计算为该精准扶贫户推荐收益最好的方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市交通部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照分成5组,制成如图所示频率分直方图.

1)求图中x的值;

2)求这组数据的平均数和中位数;

3)已知满意度评分值在内的男生数与女生数3:2,若在满意度评分值为的人中随机抽取2人进行座谈,求2人均为男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,O的中点.

1)证明:平面

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心坐标为,且该圆经过点.

1)求圆的标准方程;

2)若点也在圆上,且弦长为8,求直线的方程;

3)直线交圆两点,若直线的斜率之积为2,求证:直线过一个定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于曲线,有如下结论:

①曲线C关于原点对称;

②曲线C关于直线x±y=0对称;

③曲线C是封闭图形,且封闭图形的面积大于2π;

④曲线C不是封闭图形,且它与圆x2+y2=2无公共点;

⑤曲线C与曲线4个交点,这4点构成正方形.其中所有正确结论的序号为__

查看答案和解析>>

同步练习册答案