精英家教网 > 高中数学 > 题目详情

已知函数数学公式数学公式,动直线x=t分别与函数y=f(x)、y=g(x)的图象分别交于点A(t,f(t))、B(t,g(t)),在点A处作函数y=f(x)的图象的切线,记为直线l1,在点B处作函数y=g(x)的图象的切线,记为直线l2
(Ⅰ)证明:不论t取何实数值,直线l1与l2恒相交;
(Ⅱ)若直线l1与l2相交于点P,试求点P到直线AB的距离;
(Ⅲ)当t<0时,试讨论△PAB何时为锐角三角形?直角三角形?钝角三角形?

解:(Ⅰ)
∴直线l1的斜率,直线l2的斜率
令k1=k2,得,此方程没有实数解,∴不论t取何实数值,直线l1与l2恒相交.
(Ⅱ)直线l1的方程为:y=f(t)+g(t)(x-t),…①
直线l2的方程为:y=g(t)+f(t)(x-t),…②
由①、②得:(g(t)-f(t))(x-t-1)=0.
,∴x-t=1,又∵直线AB方程为x=t,直线AB垂直x轴,∴点P到直线AB的距离为1.
(Ⅲ)由(Ⅱ)可求得P(t+1,2et),
①∵

∵t<0,e2t<1,∴
又∵
∴cos∠B>0,∠B恒为锐角.
②∵

∴不论t取何值,∠A恒为锐角.
③∵,∴
,得(e2t2+e2t-1>0,

又∵,∴cos∠P>0,∠P为锐角.
,得
此时,cos∠P=0,∠P为直角;
,得(e2t2+e2t-1<0,
,此时,cos∠P<0,∠P为钝角.
综合①②③得:当时,△PAB为钝角三角形;
时,△PAB为直角三角形;
时,△PAB为锐角三角形.
分析:(Ⅰ)求出两个函数的导数,即得切线的斜率,令这两条切线的斜率相等,此方程无解,故这两条切线的斜率一定不相等,得到直线l1与l2恒相交.
(Ⅱ)用点斜式求得直线l1和直线l2的方程,求得交点P的横坐标满足x-t=1,又直线AB方程为x=t,直线AB垂直x轴,
故点P到直线AB的距离为 1.
(Ⅲ)利用两个向量的数量积的定义、数量积公式可得∠B恒为锐角,且∠A恒为锐角,令 分别小于0、等于
0、小于0,求出对应的t值,即得所求.
点评:本题考查导数的几何意义,点到直线的距离公式,两个向量的数量积的定义,数量积公式,三角形形状的判定,体现了分类讨论的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=mx-2+
2
-1
(m>0,m≠1)的图象恒通过定点(a,b).设椭圆E的方程为
x2
a2
+
y2
b2
=1
(a>b>0).
(1)求椭圆E的方程.
(2)若动点T(t,0)在椭圆E长轴上移动,点T关于直线y=-x+
1
t2+1
的对称点为S(m,n),求
n
m
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①已知
a
=(3,  4), 
b
=(0,  1)
,则
a
b
方向上的投影为4;
②若函数y=(a+b)cos2x+(a-b)sin2x(x∈R)的值恒等于2,则点(a,b)关于原点对称的点的坐标是(0,-2);
③函数f(x)=
1
lgx
在(0,+∞)上是减函数;
④已知函数f(x)=ax2+(b+c)x+1(a≠0)是偶函数,其定义域为[a-c,b],则点(a,b)的轨迹是直线;
⑤P是△ABC边BC的中线AD上异于A、D的动点,AD=3,则
PA
•(
PB
+
PC
)
的取值范围是[-
9
2
,  0)

其中所有正确命题的序号是
①③④⑤
①③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x+
5
x
图象上的动点P到直线y=2x的距离为d1,到y轴的距离为d2,则d1d2=
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-
1
ex
g(x)=ex+
1
ex
,动直线x=t分别与函数y=f(x)、y=g(x)的图象分别交于点A(t,f(t))、B(t,g(t)),在点A处作函数y=f(x)的图象的切线,记为直线l1,在点B处作函数y=g(x)的图象的切线,记为直线l2
(Ⅰ)证明:不论t取何实数值,直线l1与l2恒相交;
(Ⅱ)若直线l1与l2相交于点P,试求点P到直线AB的距离;
(Ⅲ)当t<0时,试讨论△PAB何时为锐角三角形?直角三角形?钝角三角形?

查看答案和解析>>

同步练习册答案