É躯Êýy=f£¨x£©£¬ÎÒÃÇ°ÑÂú×ã·½³Ìf£¨x£©=0µÄÖµx½Ð×öº¯Êýy=f£¨x£©µÄÁãµã£®ÏÖ¸ø³öº¯Êýf£¨x£©=x3-3x2+ax+a2-10£¬ÈôËüÊÇRÉϵĵ¥µ÷º¯Êý£¬ÇÒ1ÊÇËüµÄÁãµã£®
£¨¢ñ£©ÇóʵÊýaµÄÖµ£»
£¨¢ò£©ÉèQ1£¨x1£¬0£©£¬Èô¹ýP1£¨x1£¬f£¨x1£©£©×÷º¯Êýy=f£¨x£©µÄͼÏóµÄÇÐÏßÓëxÖá½»ÓÚµãQ2£¨x2£¬0£©£¬ÔÙ¹ýP2£¨x2£¬f£¨x2£©£©×÷º¯Êýy=f£¨x£©µÄͼÏóµÄÇÐÏßÓëxÖá½»ÓÚµãQ3£¨x3£¬0£©£¬¡­£¬ÒÀ´ËÏÂÈ¥£¬¹ýPn£¨xn£¬f£¨xn£©£©£¨n¡ÊN*£©×÷º¯Êýy=f£¨x£©µÄͼÏóµÄÇÐÏßÓëxÖá½»ÓÚµãQn+1£¨xn+1£¬0£©£¬¡­£®
Èôx1=2£¬xn£¾1£¬Çóxn£®

¡¾´ð°¸¡¿·ÖÎö£º£¨¢ñ£©ÓÉ1ÊǺ¯Êýy=f£¨x£©µÄÁãµã£¬µÃ£ºf£¨1£©=a2+a-12=0£¬ÓÉ´ËÄÜÇó³öʵÊýaµÄÖµ£®
£¨¢ò£©ÓÉf£¨x£©=£¨x-1£©3£¬Öªf£¨xn£©=£¨xn-1£©3£¬Æäµ¼ÊýΪf¡ä£¨x£©=3£¨x-1£©2£¬¹ýPn£¨xn£¬f£¨xn£©£©£¨n¡ÊN+£©×÷º¯Êýy=f£¨x£©Í¼ÏóµÄÇÐÏß·½³ÌΪ£ºy-£¨xn-1£©3=3£¨xn-1£©2£¨x-xn£©£¬ÓÉ´ËÄÜÇó³öxn£®
½â´ð£º½â£º£¨¢ñ£©ÓÉ1ÊǺ¯Êýy=f£¨x£©µÄÁãµã£¬µÃ£ºf£¨1£©=a2+a-12=0£¬
½âµÃ£ºa=3£¬»òa=-4£¬¡­£¨2·Ö£©
Èôa=3£¬Ôòf£¨x£©=x3-3x2+3x-1£¬f¡ä£¨x£©=3x2-6x+3=3£¨x-1£©2¡Ý0ºã³ÉÁ¢£¬Âú×ãÌõ¼þ£»
Èôa=-4£¬Ôòf£¨x£©=x3-3x2-4x+6£¬
f¡ä£¨x£©=3x2-6x-4ÔÚRÉÏÓÐÕý£¬Óиº£¬
²»Âú×ã¡°ÊÇRÉϵÄÔöº¯Êý¡±Ìõ¼þ£¬ËùÒÔÉáÈ¥£®
ËùÒÔ£¬a=3£®¡­£¨6·Ö£©
£¨¢ò£©ÓÉ£¨¢ñ£©Öªf£¨x£©=£¨x-1£©3£¬Ôòf£¨xn£©=£¨xn-1£©3£¬
Æäµ¼ÊýΪf¡ä£¨x£©=3£¨x-1£©2£¬
¹ýPn£¨xn£¬f£¨xn£©£©£¨n¡ÊN+£©×÷º¯Êýy=f£¨x£©Í¼ÏóµÄÇÐÏß·½³Ì
Ϊ£ºy-£¨xn-1£©3=3£¨xn-1£©2£¨x-xn£©£¬¡­£¨8·Ö£©
Áîy=0µÃ£º-£¨xn-1£©3=3£¨xn-1£©2£¨xn+1-xn£©£¬
¡ßxn£¾1£¬
¡à£¬£¬
¡àÊýÁÐ{xn-1}ÊÇÒÔ1ΪÊ×ÏΪ¹«±ÈµÄµÈ±ÈÊýÁР  ¡­£¨12·Ö£©
xn-1=£¬Ôò£®¡­£¨14·Ö£©
µãÆÀ£º±¾•g¿¼²éÊýÁеÄ×ÛºÏÔËÓ㬽âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£¬×¢ÒâºÏÀíµØ½øÐеȼÛת»¯£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

13¡¢É躯Êýy=f£¨x£©´æÔÚ·´º¯Êýy=f-1£¨x£©£¬ÇÒº¯Êýy=x-f£¨x£©µÄͼÏó¹ýµã£¨1£¬2£©£¬Ôòº¯Êýy=f-1£¨x£©-xµÄͼÏóÒ»¶¨¹ýµã
£¨-1£¬2£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýy=f£¨x£©ÊǶ¨ÒåÔÚR+Éϵĺ¯Êý£¬²¢ÇÒÂú×ãÏÂÃæÈý¸öÌõ¼þ£º¢Ù¶ÔÈÎÒâÕýÊýx£¬y ¶¼ÓÐf£¨xy£©=f£¨x£©+f£¨y£©£»¢Úµ±x£¾1ʱ£¬f£¨x£©£¼0£»¢Ûf£¨3£©=-1£®
£¨1£©Çóf£¨1£©£¬f£¨
19
£©µÄÖµ£»
£¨2£©Ö¤Ã÷£ºf£¨x£©ÔÚR+ÉÏÊǼõº¯Êý£»
£¨3£©Èç¹û²»µÈʽ·Öf£¨x£©+f£¨2-x£©£¼2³ÉÁ¢£¬ÇóxµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýy=f£¨x£©µÄµ¼º¯ÊýÊÇy=f¡ä£¨x£©£¬³Æ¦Åyx=f¡ä(x)•
x
y
Ϊº¯Êýf£¨x£©µÄµ¯ÐÔº¯Êý£®
º¯Êýf£¨x£©=2e3xµ¯ÐÔº¯ÊýΪ
3x
3x
£»Èôº¯Êýf1£¨x£©Óëf2£¨x£©µÄµ¯ÐÔº¯Êý·Ö±ðΪ¦Åf 1xÓë¦Åf 2x£¬Ôòy=f1£¨x£©+f2£¨x£©£¨f1£¨x£©+f2£¨x£©¡Ù0£©µÄµ¯ÐÔº¯ÊýΪ
 f1(x)ef1x+f2(x)ef2x  
f1(x)+f2(x)
 f1(x)ef1x+f2(x)ef2x  
f1(x)+f2(x)
£®
£¨ÓæÅf 1x£¬¦Åf 2x£¬f1£¨x£©Óëf2£¨x£©±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýy=f£¨x£©ÔÚ£¨-¡Þ£¬+¡Þ£©ÄÚÓж¨Ò壬¶ÔÓÚ¸ø¶¨µÄÕýÊýK£¬¶¨Ò庯ÊýfK£¨x£©=
f(x)£¬f(x)¡Ük
k£¬f(x)£¾k
£¬È¡º¯Êýf£¨x£©=2-x-e-x£¬Èô¶ÔÈÎÒâµÄx¡Ê£¨-¡Þ£¬+¡Þ£©£¬ºãÓÐfK£¨x£©=f£¨x£©£¬ÔòKµÄ×îСֵΪ
1
1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýy=f£¨x£©ÔÚ£¨-¡Þ£¬+¡Þ£©ÄÚÓж¨Ò壮¶ÔÓÚ¸ø¶¨µÄÕýÊýK£¬¶¨Ò庯Êýfk£¨x£©=
f(x)£¬f(x)¡ÝK
K£¬f(x)£¼K
£¬È¡º¯Êýf£¨x£©=2+x+e-x£®Èô¶ÔÈÎÒâµÄx¡Ê£¨+¡Þ£¬-¡Þ£©£¬ºãÓÐfk£¨x£©=f£¨x£©£¬Ôò£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸