精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是平行四边形, 平面,点 分别为 的中点,且 .

(1)证明: 平面

(2)设直线与平面所成角为,当内变化时,求二面角的取值范围.

【答案】(1) 见解析;(2) .

【解析】试题分析:()根据直线与平面平行的判定定理,需在平面内找一条与平行的直线.结合题设可取取中点,连接, 易得四边形为平行四边形,从而得,问题得证.

)思路一、首先作出二面角的平面角,即过棱BC上一点分别在两个平面内作棱BC的垂线.因为,点分别为的中点,则.连接,因为平面,所以AMPM在面ABC内的射影,所以,所以即为二面角的平面角.再作出直线与平面所成的角,即作出AC在平面PBC内的射影.平面,从而平面平面.过点在平面内作,根据面面垂直的性质知平面.连接,于是就是直线与平面所成的角.在中,找出的关系,即可根据的范围求出的范围. 思路二、以所在的直线分别为轴、轴、轴,建立空间直角坐标系,利用空间向量亦可求解.

试题解析:()证明:取中点,连接

因为点分别为的中点,所以

四边形为平行四边形,则平面平面

所以平面.

)解法1:连接,因为,点分别为的中点,则

平面,则所以即为二面角的平面角

,所以平面,则平面平面

过点在平面内作,则平面

连接,于是就是直线与平面所成的角,即=

中,

中,

即二面角取值范围为

解法2:连接,因为,点分别为的中点,则

平面,则所以即为二面角的平面角,设为

所在的直线分别为轴、轴、轴,建立如图所示的空间直角坐标系,则

于是,

设平面的一个法向量为

则由

可取,又

于是

即二面角取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆:的离心率,过椭圆的上顶点和右顶点的直线与原点的距离为

(1)求椭圆的方程;

(2)是否存在直线经过椭圆左焦点与椭圆交于,两点,使得以线段为直径的圆恰好经过坐标原点?若存在,求出直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校1800名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50名学生组成一个样本,将测试结果按如下方式分成五组:第一组,第二组……,第五组,如图是按上述分组方法得到的频率分布直方图.

(1)请估计学校1800名学生中,成绩属于第四组的人数;

(2)若成绩小于15秒认为良好,求该样本中在这次百米测试中成绩良好的人数;

(3)请根据频率分布直方图,求样本数据的众数、平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:第二象限角比第一象限角大;是第二象限角,则三角形的内角是第一象限角或第二象限角;函数是最小正周期为的周期函数;△ABC中,若,A>B.其中正确的是___________ (写出所有正确说法的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双曲线 的左、右焦点分别为F1、F2,直线l过F2且与双曲线交于A、B两点.
(1)若l的倾斜角为 是等边三角形,求双曲线的渐近线方程;
(2)设 ,若l的斜率存在,且|AB|=4,求l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用另一种形式表示下列集合:

(1){绝对值不大于3的整数};

(2){所有被3整除的数};

(3){x|x=|x|,x∈Zx<5};

(4){x|(3x-5)(x+2)(x2+3)=0,x∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(Ⅰ)当时,解不等式

(Ⅱ)若关于的方程的解集中恰有一个元素,求的取值范围;

(Ⅲ)设,若对任意,函数在区间上的最大值与最小值的和不大于,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线方程为,右焦点,双曲线的实轴为为双曲线上一点(不同于),直线分别与直线交于两点.

)求双曲线的方程.

)证明为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市场调查发现,某种产品在投放市场的30天中,其销售价格P(元)和时间t(天)(t∈N)的关系如图所示

(1)写出销售价格P(元)和时间t(天)的函数解析式;
(2)若日销售量Q(件)与时间t(天)的函数关系是Q=﹣t+40(0≤t≤30,t∈N),求该商品的日销售金额y(元)与时间t(天)的函数解析式;
(3)问该产品投放市场第几天时,日销售金额最高?最高值为多少元?

查看答案和解析>>

同步练习册答案