分析 (Ⅰ)根据新定义证明即可,
(Ⅱ)根据新定义判断即可,
(Ⅲ)原不等式等价于只需证n(a1+a3+…+a2n+1)>(n+1)a2+a4+…+a2n.利用数学归纳法证明即可
解答 解:(Ⅰ)∵2n+2n+2=5•2n,2•2n+1=4•2n,
∴an+2+an-2an+1=${2^{_{n+2}}}+{2_{^n}}-2•{2^{_{n+1}}}={2^n}>0$,
∴an+2+an>2an+1,
∴数列{2n}是“T数列”;
(Ⅱ)${a_{n+2}}+{a_n}-2{a_{n+1}}={(n+2)^2}•{({\frac{1}{2}})^{n+2}}$$+{n^2}•{({\frac{1}{2}})^n}$$-2{(n+1)^2}•{({\frac{1}{2}})^{n+1}}$
=${({\frac{1}{2}})^n}•[\frac{{{{(n+2)}^2}}}{4}+{n^2}-{(n+1)^2}]$=${({\frac{1}{2}})^n}•({\frac{{{n^2}-4n}}{4}})>0$
解得,n>4,n∈N*,故数列{an}不是T数列.
(Ⅲ)要证$\frac{{{a_1}+{a_3}+…+{a_{2n+1}}}}{{{a_2}+{a_4}+…+{a_{2n}}}}>\frac{n+1}{n}$
只需证n(a1+a3+…+a2n+1)>(n+1)a2+a4+…+a2n.
下面运用数学归纳法证明.
(ⅰ)当n=1时,a1+a3>2a2成立.
(ⅱ)假设当n=k时,不等式成立,
即k(a1+a3+…+a2k+1)>(k+1)a2+a4+…+a2k
那么当n=k+1时,
$\begin{array}{l}(k+1)({a_1}+{a_3}+…+{a_{2k+3}})-(k+2)({a_2}+{a_4}+…+{a_{2k+2}})\\=[k({a_1}+{a_3}+…+{a_{2k+1}})+({a_1}+{a_3}+…+{a_{2k+1}})+(k+1){a_{2k+3}}]\\-[(k+1)({a_2}+{a_4}+…+{a_{2k}})+({a_2}+{a_4}+…+{a_{2k}})+(k+2){a_{2k+2}}]\\>(k+1){a_{2k+3}}-(k+2){a_{2k+2}}+({a_1}+{a_3}+…+{a_{2k+1}})-({a_2}+{a_4}+…+{a_{2k}})\\=(k+1)({a_{2k+3}}-{a_{2k+2}})+({a_1}+{a_3}+…+{a_{2k+1}})-({a_2}+{a_4}+…+{a_{2k}}+{a_{2k+2}})\end{array}$
∵{an}是T数列,∴an+2+an>2an+1,∴an+2-an+1>an+1-an∴an+2-an+1>an+1-an>an-an-1>…>a2-a,
∴(a2k+3-a2k+2)>(a2k+2-a2k+1),(a2k+3-a2k+2)>(a2k-a2k-1),
依此类推(a2k+3-a2k+2)>(a2-a1),
将上述式子相加,得(k+1)(a2k+3-a2k+2)+(a1+a3+…+a2k+1)-(a2+a4+…+a2k+a2k+2)>0,
∴当n=k+1时不等式成立,
根据(ⅰ)和(ⅱ)可知,
对于任意n∈N*不等式$\frac{{{a_1}+{a_3}+…+{a_{2n+1}}}}{{{a_2}+{a_4}+…+{a_{2n}}}}>\frac{n+1}{n}$均成立.
点评 本题考查了新定义的问题和数学归纳法,考查了学生的运算能力解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{5}{2}$ | B. | 2 | C. | $\frac{5}{3}$ | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 若l∥α,α∥β,则l∥β | B. | 若α⊥β,l⊥α,则l⊥β | C. | 若l∥α,α⊥β,则l⊥β | D. | 若l⊥α,α∥β,则l⊥β |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com