精英家教网 > 高中数学 > 题目详情

【题目】已知无穷数列,,满足:对任意的,都有=,=,=.记=(表示个实数,,中的最大值).

(1)若=,=,=,求,,的值;

(2)若=,=,求满足=的所有值;

(3)设,,是非零整数,且,,互不相等,证明:存在正整数,使得数列,,中有且只有一个数列自第项起各项均为.

【答案】1=,=,=.(2,,,.(3)见详解

【解析】

(1)由题意代入分别求出,,的值;

(2)设=,的值,讨论的函数表达式,进而得出,,,,,都用表示,进而求出所有的的值;

(3)分类讨论:先,,都不为零,由题意得出矛盾;所以存在正整数,使,,中至少有一个为零,再讨论两个为零得出矛盾,以此类推,即有:对,=,=,=,,此时有且仅有一个数列项起各项均为.

1)由题意:===;===;===;以此类推,看得出=,=,=.

2)若=,=,=,则=,=,=,

,=,

=,=,

时,=,=,=,=,由=,得=,不符合题意.

,=,=,=,,由=,

=,符合题意.

,=,=,=,

=,得=,符合题意,

综上的取值是:,,,.

3)先证明:存在正整数,使,,,中至少有一个为零,

假设对任意正整数,

,,都不为零,由,,是非零整数,且,,互不相等,得,,

若对任意,,,都不为零,则.即对任意,.

时,=,=,=,

所以=,所以单调递减,由为有限正整数,所以必存在正整数,使得,矛盾,

所以存在正整数,使,,中至少有一个为零,

不妨设=,且,,则=,且=,

否则若==,因为=,

则必有===,矛盾.

于是,=,=,且=,所以,=,

=,==,

以此类推,即有:对,=,=,=,,

此时有且仅有一个数列项起各项均为.

综上:结论成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且点在函数的图像上;

1)求数列的通项公式;

2)设数列满足:,求的通项公式;

3)在第(2)问的条件下,若对于任意的,不等式恒成立,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知梯形中,,四边形为矩形,,平面平面

Ⅰ)求证:平面

Ⅱ)求平面与平面所成锐二面角的余弦值;

Ⅲ)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在R上的两个函数,满足 满足,且当时,.若在区间上,关于的方程8个不同的实数根,则k的取值范围是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)已知函数时总有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在实数集上的偶函数和奇函数满足.

1)求的解析式;

2)若定义在实数集上的以2为最小正周期的周期函数,当时,,试求在闭区间上的表达式,并证明在闭区间上单调递减;

3)设(其中为常数),若对于恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】李克强总理在很多重大场合都提出大众创业,万众创新.某创客,白手起家,2015年一月初向银行贷款十万元做创业资金,每月获得的利润是该月初投入资金的.每月月底需要交纳房租和所得税共为该月全部金额(包括本金和利润)的,每月的生活费等开支为3000元,余款全部投入创业再经营.如此每月循环继续.

1)问到2015年年底(按照12个月计算),该创客有余款多少元?(结果保留至整数元)

2)如果银行贷款的年利率为,问该创客一年(12个月)能否还清银行贷款?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处切线的斜率为1.

(1)求的值;

(2)设,若对任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现对某市工薪阶层关于楼市限购令的态度进行调查,随机抽调了50,他们月收入的频数分布及对楼市限购令赞成人数如表:

月收入(单位百元)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

频数

5

10

15

10

5

5

赞成人数

4

8

12

5

2

1

()由以上统计数据填下面2×2列联表并问是否有99%的把握认为月收入以5500为分界点楼市限购令的态度有差异;

月收入低于55百元的人数

月收入不低于55百元的人数

合计

赞成

不赞成

合计

()若采用分层抽样在月收入在[15,25),[25,35)的被调查人中共随机抽取6人进行追踪调查,并给予其中3红包奖励,求收到红包奖励的3人中至少有1人收入在[15,25)的概率.

参考公式:K2,其中n=a+b+c+d.

参考数据:

P(K2k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

同步练习册答案