下列函数中,既是偶函数,又是在区间
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032640893566.png)
上单调递减的函数是( )
试题分析:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032640909504.png)
为非奇非偶函数,排除A;
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032640924466.png)
在区间
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032640893566.png)
上单调递增,排除B;
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032640940588.png)
是周期函数,在区间
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032640893566.png)
上不单调递减,排除C;
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032640956506.png)
是偶函数,在区间
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032640893566.png)
上单调递减,故选D.
练习册系列答案
相关习题
科目:高中数学
来源:不详
题型:解答题
(本小题满分12分)已知幂函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032018958447.png)
的图象经过点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032018989539.png)
.
(Ⅰ)求函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032018958447.png)
的解析式;
(Ⅱ)判断函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032018958447.png)
在区间
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032019020535.png)
上的单调性,并用单调性的定义证明.
查看答案和解析>>
科目:高中数学
来源:不详
题型:单选题
已知函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034740658559.png)
,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034740673639.png)
的单调递减区间为( )
A.[0,1) | B.(-∞,0) |
C.![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034740689541.png) | D.(-∞,1)和(1,+∞) |
查看答案和解析>>
科目:高中数学
来源:不详
题型:填空题
已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240331211791146.png)
,则不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033121194701.png)
的解集是
.来
查看答案和解析>>
科目:高中数学
来源:不详
题型:填空题
已知函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032348076818.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032348092525.png)
上是减函数,则实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032348107283.png)
的取值范围是________.
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
设定义域为[0,1]的函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031436927445.png)
同时满足以下三个条件时称
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031436927445.png)
为“友谊函数”:
(1)对任意的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031436958497.png)
,总有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031436927445.png)
≥0;
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031436990456.png)
;
(3)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240314370051658.png)
成立,则下列判断正确的有
.(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031436927445.png)
为“友谊函数”,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031437036489.png)
;
(2)函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031437052630.png)
在区间[0,1]上是“友谊函数”;
(3)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031436927445.png)
为“友谊函数”,且0≤
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031437083299.png)
<
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031437099331.png)
≤1,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031437114484.png)
≤
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031437130497.png)
.
查看答案和解析>>