¶ÔÓÚÔÚ[a£¬b]ÉÏÓÐÒâÒåµÄÁ½¸öº¯Êýf£¨x£©Óëg£¨x£©£¬Èç¹û¶ÔÈÎÒâµÄx¡Ê[a£¬b]£¬¾ùÓÐ|f£¨x£©-g£¨x£©|¡Ü1£¬Ôò³Æf£¨x£©Óëg£¨x£©ÔÚ[a£¬b]ÉÏÊǽӽüµÄ£¬·ñÔò³Æf£¨x£©Óëg£¨x£©ÔÚ[a£¬b]ÉÏÊǷǽӽüµÄ£®ÏÖÔÚÓÐÁ½¸öº¯Êýf£¨x£©=logt£¨x-3t£©Óëg£¨x£©=logt£¨£©£¨t£¾0ÇÒt¡Ù1£©£¬ÏÖ¸ø¶¨Çø¼ä[t+2£¬t+3]£®
£¨1£©Èôt=£¬ÅжÏf£¨x£©Óëg£¨x£©ÊÇ·ñÔÚ¸ø¶¨Çø¼äÉϽӽü£»
£¨2£©Èôf£¨x£©Óëg£¨x£©ÔÚ¸ø¶¨Çø¼ä[t+2£¬t+3]É϶¼ÓÐÒâÒ壬ÇótµÄÈ¡Öµ·¶Î§£»
£¨3£©ÌÖÂÛf£¨x£©Óëg£¨x£©ÔÚ¸ø¶¨Çø¼ä[t+2£¬t+3]ÉÏÊÇ·ñÊǽӽüµÄ£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©µ±Ê±£¬f£¨x£©-g£¨x£©=logt[£¨x-£©£¨x-£©]=¿¼²éº¯Êýh£¨x£©=
ÔÚÉϵÄÖµÓò£¬¼´¿É
£¨2£©ÓÉÌâÒâÖª£¬t£¾0ÇÒt¡Ù1£¬t+2-3t£¾0£¬t+2-t£¾0¿ÉÇó
£¨3£©ÀûÓ÷´Ö¤·¨£º¼ÙÉèf£¨x£©Óëg£¨x£©ÔÚ¸ø¶¨Çø¼ä[t+2£¬t+3]ÉÏÊǽӽüµÄ£¬ÓÉ|f£¨x£©-g£¨x£©|=|logt£¨x2-4tx+3t2£©|¡Ü1¿ÉµÃ-1¡Ülogt£¨x2-4tx+3t2£©¡Ü1£¬¿¼²éº¯ÊýG£¨x£©=logt£¨x2-4tx+3t2ÔÚ[t+2£¬t+3]Éϵĵ¥µ÷ÐÔ£¬´Ó¶ø¿ÉÇóG£¨x£©max=logt£¨4-4t£©£¬G£¨x£©min=logt£¨9-6t£©£¬ÔòÓÐ0£¼t£¼1logt£¨4-4t£©¡Ü1logt£¨9-6t£©¡Ý-1£¬¿ÉÇó
½â´ð£º½â£º£¨1£©µ±Ê±£¬f£¨x£©-g£¨x£©=logt[£¨x-£©£¨x-£©]=
Áîh£¨x£©=
µ±Ê±£¬h£¨x£©¡Ê[log6£¬-1]
¼´|f£¨x£©-g£¨x£©|¡Ý1£¬
f£¨x£©Óëg£¨x£©ÊÇ·ñÔÚ¸ø¶¨Çø¼äÉÏÊǷǽӽüµÄ
£¨2£©ÓÉÌâÒâÖª£¬t£¾0ÇÒt¡Ù1£¬t+2-3t£¾0£¬t+2-t£¾0
¡à0£¼t£¼1                                                
£¨3£©¡ß|f£¨x£©-g£¨x£©|=|logt£¨x2-4tx+3t2£©|
¼ÙÉèf£¨x£©Óëg£¨x£©ÔÚ¸ø¶¨Çø¼ä[t+2£¬t+3]ÉÏÊǽӽüµÄ£¬
ÔòÓÐ|logt£¨x2-4tx+3t2£©|¡Ü1¡à-1¡Ülogt£¨x2-4tx+3t2£©¡Ü1    
ÁîG£¨x£©=logt£¨x2-4tx+3t2£©£¬µ±¡à0£¼t£¼1ʱ£¬[t+2£¬t+3]ÔÚx=2tµÄÓҲ࣬
¼´G£¨x£©=logt£¨x2-4tx+3t2£©£¬ÔÚ[t+2£¬t+3]ÉÏΪ¼õº¯Êý£¬
¡àG£¨x£©max=logt£¨4-4t£©£¬
¡àG£¨x£©min=logt£¨9-6t£©
ËùÒÔÓÉ£¨*£©Ê½¿ÉµÃ{0£¼t£¼1logt£¨4-4t£©¡Ü1logt£¨9-6t£©¡Ý-1£¬½âµÃ
0£¼t¡Ü
Òò´Ë£¬µ±0£¼t¡Üʱ£¬f£¨x£©Óëg£¨x£©ÔÚ¸ø¶¨Çø¼ä[t+2£¬t+3]ÉÏÊǽӽüµÄ£»µ±t£¾Ê±£¬
f£¨x£©Óëg£¨x£©ÔÚ¸ø¶¨Çø¼ä[t+2£¬t+3]ÉÏÊǷǽӽüµÄ£®¡­£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²é¶ÔÊýº¯ÊýµÄÐÔÖʺÍÓ¦Ó㬽âÌâµÄ¹Ø¼üÊÇÊìÁ·ÕÆÎÕº¯ÊýµÄÐÔÖʲ¢ÄÜÁé»îÓ¦ÓÃ
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚÔÚ[a£¬b]ÉÏÓÐÒâÒåµÄÁ½¸öº¯Êýf£¨x£©Óëg£¨x£©£¬Èç¹û¶ÔÈÎÒâµÄx¡Ê[a£¬b]£¬¾ùÓÐ|f£¨x£©-g£¨x£©|¡Ü1£¬Ôò³Æf£¨x£©Óëg£¨x£©ÔÚ[a£¬b]ÉÏÊǽӽüµÄ£¬·ñÔò³Æf£¨x£©Óëg£¨x£©ÔÚ[a£¬b]ÉÏÊǷǽӽüµÄ£®ÏÖÔÚÓÐÁ½¸öº¯Êýf£¨x£©=logt£¨x-3t£©Óëg£¨x£©=logt£¨
1
x-t
£©£¨t£¾0ÇÒt¡Ù1£©£¬ÏÖ¸ø¶¨Çø¼ä[t+2£¬t+3]£®
£¨1£©Èôt=
1
2
£¬ÅжÏf£¨x£©Óëg£¨x£©ÊÇ·ñÔÚ¸ø¶¨Çø¼äÉϽӽü£»
£¨2£©Èôf£¨x£©Óëg£¨x£©ÔÚ¸ø¶¨Çø¼ä[t+2£¬t+3]É϶¼ÓÐÒâÒ壬ÇótµÄÈ¡Öµ·¶Î§£»
£¨3£©ÌÖÂÛf£¨x£©Óëg£¨x£©ÔÚ¸ø¶¨Çø¼ä[t+2£¬t+3]ÉÏÊÇ·ñÊǽӽüµÄ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

¶ÔÓÚÔÚ[a£¬b]ÉÏÓÐÒâÒåµÄÁ½¸öº¯Êýf£¨x£©Óëg£¨x£©£¬Èç¹û¶ÔÈÎÒâµÄx¡Ê[a£¬b]£¬¾ùÓÐ|f£¨x£©-g£¨x£©|¡Ü1£¬Ôò³Æf£¨x£©Óëg£¨x£©ÔÚ[a£¬b]ÉÏÊǽӽüµÄ£¬·ñÔò³Æf£¨x£©Óëg£¨x£©ÔÚ[a£¬b]ÉÏÊǷǽӽüµÄ£®ÏÖÔÚÓÐÁ½¸öº¯Êýf£¨x£©=logt£¨x-3t£©Óëg£¨x£©=logt£¨Êýѧ¹«Ê½£©£¨t£¾0ÇÒt¡Ù1£©£¬ÏÖ¸ø¶¨Çø¼ä[t+2£¬t+3]£®
£¨1£©Èôt=Êýѧ¹«Ê½£¬ÅжÏf£¨x£©Óëg£¨x£©ÊÇ·ñÔÚ¸ø¶¨Çø¼äÉϽӽü£»
£¨2£©Èôf£¨x£©Óëg£¨x£©ÔÚ¸ø¶¨Çø¼ä[t+2£¬t+3]É϶¼ÓÐÒâÒ壬ÇótµÄÈ¡Öµ·¶Î§£»
£¨3£©ÌÖÂÛf£¨x£©Óëg£¨x£©ÔÚ¸ø¶¨Çø¼ä[t+2£¬t+3]ÉÏÊÇ·ñÊǽӽüµÄ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

¶ÔÓÚÔÚ[a£¬b]ÉÏÓÐÒâÒåµÄÁ½¸öº¯Êýf£¨x£©Óëg£¨x£©£¬Èç¹û¶ÔÈÎÒâµÄx¡Ê[a£¬b]£¬¾ùÓÐ|f£¨x£©-g£¨x£©|¡Ü1£¬Ôò³Æf£¨x£©Óëg£¨x£©ÔÚ[a£¬b]ÉÏÊǽӽüµÄ£¬·ñÔò³Æf£¨x£©Óëg£¨x£©ÔÚ[a£¬b]ÉÏÊǷǽӽüµÄ£®ÏÖÔÚÓÐÁ½¸öº¯Êýf£¨x£©=logt£¨x-3t£©Óëg£¨x£©=logt£¨
1
x-t
£©£¨t£¾0ÇÒt¡Ù1£©£¬ÏÖ¸ø¶¨Çø¼ä[t+2£¬t+3]£®
£¨1£©Èôt=
1
2
£¬ÅжÏf£¨x£©Óëg£¨x£©ÊÇ·ñÔÚ¸ø¶¨Çø¼äÉϽӽü£»
£¨2£©Èôf£¨x£©Óëg£¨x£©ÔÚ¸ø¶¨Çø¼ä[t+2£¬t+3]É϶¼ÓÐÒâÒ壬ÇótµÄÈ¡Öµ·¶Î§£»
£¨3£©ÌÖÂÛf£¨x£©Óëg£¨x£©ÔÚ¸ø¶¨Çø¼ä[t+2£¬t+3]ÉÏÊÇ·ñÊǽӽüµÄ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011-2012ѧÄêºþ±±Ê¡Î人Êв¿·ÖÖصãÖÐѧ¸ßÒ»£¨ÉÏ£©ÆÚÖÐÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

¶ÔÓÚÔÚ[a£¬b]ÉÏÓÐÒâÒåµÄÁ½¸öº¯Êýf£¨x£©Óëg£¨x£©£¬Èç¹û¶ÔÈÎÒâµÄx¡Ê[a£¬b]£¬¾ùÓÐ|f£¨x£©-g£¨x£©|¡Ü1£¬Ôò³Æf£¨x£©Óëg£¨x£©ÔÚ[a£¬b]ÉÏÊǽӽüµÄ£¬·ñÔò³Æf£¨x£©Óëg£¨x£©ÔÚ[a£¬b]ÉÏÊǷǽӽüµÄ£®ÏÖÔÚÓÐÁ½¸öº¯Êýf£¨x£©=logt£¨x-3t£©Óëg£¨x£©=logt£¨£©£¨t£¾0ÇÒt¡Ù1£©£¬ÏÖ¸ø¶¨Çø¼ä[t+2£¬t+3]£®
£¨1£©Èôt=£¬ÅжÏf£¨x£©Óëg£¨x£©ÊÇ·ñÔÚ¸ø¶¨Çø¼äÉϽӽü£»
£¨2£©Èôf£¨x£©Óëg£¨x£©ÔÚ¸ø¶¨Çø¼ä[t+2£¬t+3]É϶¼ÓÐÒâÒ壬ÇótµÄÈ¡Öµ·¶Î§£»
£¨3£©ÌÖÂÛf£¨x£©Óëg£¨x£©ÔÚ¸ø¶¨Çø¼ä[t+2£¬t+3]ÉÏÊÇ·ñÊǽӽüµÄ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸