【题目】某渔业公司今年初用98万元购进一艘渔船用于捕捞,第一年需各种费用12万
元,从第二年开始包括维修费在内,每年所需费用均比上一年增加4万元,该船每年捕捞的
总收入为50万元.
(1)该船捕捞几年开始盈利(即总收入减去成本及所有费用之差为正值)?
(2)该船捕捞若干年后,处理方案有两种:
①当年平均盈利达到最大值时,以26万元的价格卖出;
②当盈利总额达到最大值时,以8万元的价格卖出.问哪一种方案较为合算,请说明理由.
【答案】(1)该船捕捞3年后开始盈利;(2)方案最合算。
【解析】
试题(1)列出盈利y的函数式,令其大于零解不等式即可;(2)对于方案,先求出平均盈利的函数
=-2n-+40,然后求最大值,并求出取最大值时的x;同理对方案,求出盈利总额y的最大值及此时x的值,最后比较两个方案共盈利额及时间,从而得出结论。
试题解析:(1)设捕捞n年后开始盈利,盈利为y元,则
由y>0,得n2-20n+49<0,
解得10-<n<10+(n∈N).
则3≤n≤17,故n=3.即捕捞3年后,开始盈利.
(2)①平均盈利为=-2n-+40≤-2+40=12,当且仅当2n=,即n=7时,年平均盈利最大.
故经过7年捕捞后年平均盈利最大,共盈利12×7+26=110万元.
②∵y=-2n2+40n-98=-2(n-10)2+102,
∴当n=10时,y的最大值为102.
即经过10年捕捞盈利总额最大,共盈利102+8=110万元.
综上知两种方案获利相等,但方案②的时间长,所以方案①合算.
科目:高中数学 来源: 题型:
【题目】某工艺厂有铜丝5万米,铁丝9万米,准备用这两种材料编制成花篮和花盆出售,已知一只花篮需要用铜丝200米,铁丝300米;编制一只花盆需要100米,铁丝300米,设该厂用所有原来编制个花篮, 个花盆.
(Ⅰ)列出满足的关系式,并画出相应的平面区域;
(Ⅱ)若出售一个花篮可获利300元,出售一个花盘可获利200元,那么怎样安排花篮与花盆的编制个数,可使得所得利润最大,最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程选讲]
在直角坐标系xOy中,圆C的方程为(x﹣1)2+y2= ,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,点M的极坐标为(2,θ),过点M斜率为1的直线交圆C于A,B两点.
(1)求圆C的极坐标方程;
(2)求|MA||MB|的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2-x+c定义在区间[0,1]上,x1,x2∈
[0,1],且x1≠x2,求证:
(1)f(0)=f(1);
(2)|f(x2)-f(x1)|<|x1-x2|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,∠BAD= ,AB=2,AD=1,若M、N分别是边AD、CD上的点,且满足 =λ,其中λ∈[0,1],则 的取值范围是( )
A.[﹣3,﹣1]
B.[﹣3,1]
C.[﹣1,1]
D.[1,3]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E: =1(a>b>0)经过点(2 ,1),且以椭圆短轴的两个端点和一个焦点为顶点的三角形是等边三角形.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设P(x,y)是椭圆E上的动点,M(2,0)为一定点,求|PM|的最小值及取得最小值时P点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线f(x)= ax3﹣blnx在x=1处的切线方程为y=﹣2x+
(Ⅰ)求f(x)的极值;
(Ⅱ)证明:x>0时, < (e为自然对数的底数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,侧面PAD是边长为2的等边三角形且垂直于底, 是的中点。
(1)证明:直线平面;
(2)点在棱上,且直线与底面所成角为,求二面角的余弦值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com