精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\frac{x-1}{1+x}$.
(1)求证:函数f(x)在区间(-1,+∞)上是增加的;
(2)设g(x)=f(2x),求证:函数g(x)是奇函数;
(3)在(2)的前提下,若g(x-1)+g(3-2x)<0,求实数x的取值集合.

分析 (1)利用导数大于0,可得函数f(x)在区间(-1,+∞)上是增加的;
(2)设g(x)=f(2x),利用奇函数的定义,证明函数g(x)是奇函数;
(3)在(2)的前提下,若g(x-1)+g(3-2x)<0,可化为x-1<2x-3,即可求实数x的取值集合.

解答 (1)证明:∵f(x)=$\frac{x-1}{1+x}$,
∴f′(x)=$\frac{x-1}{1+x}$=$\frac{2}{(1+x)^{2}}$>0,
∴函数f(x)在区间(-1,+∞)上是增加的;
(2)证明:g(x)=f(2x)=$\frac{{2}^{x}-1}{1+{2}^{x}}$,
∴g(-x)=$\frac{{2}^{-x}-1}{1+{2}^{-x}}$=$\frac{1-{2}^{x}}{{2}^{x}+1}$=-g(x),
∴函数g(x)是奇函数;
(3)解:∵函数g(x)是奇函数且是增加的,g(x-1)+g(3-2x)<0,
∴g(x-1)<g(2x-3),
∴x-1<2x-3,
∴x>2,
∴实数x的取值集合是{x|x>2}.

点评 本题考查函数的单调性、奇偶性,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知集合A={x|log2x<8},B={x|$\frac{x+2}{x-4}$<0},C={x|a<x<a+1}.
(1)求集合A∩B;
(2)若B∪C=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合M={x|x2-1≤0},N={x|log2(x+2)<log23,x∈Z},则M∩N=(  )
A.{-1,0}B.{1}C.{-1,0,1}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如果函数f(x)=ax+b的图象经过第一、二、四象限,不经过第三象限,那么一定有(  )
A.0<a<1,-1<b<0B.0<a<1,b<-1C.a>1,b<-1D.a>1,-1<b<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设集合A={x|-4<x<2},B={x|m-1<x<m+1},求分别满足下列条件的m的取值集合:
(1)A∩B=B;
(2)A∩B≠∅

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若实数x,y满足条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≥2}\\{x≤1}\end{array}\right.$,则2x+y的最大值为(  )
A.5B.4C.3D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设U=R,A={x|1≤x≤3},B={x|2<x≤4}.
(1)求A∩B;   
(2)求A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,在底半径为2,母线长为4的圆锥中内接一个高为$\sqrt{3}$的圆柱,圆柱的表面积(2+2$\sqrt{3}$)π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=|logax|(0<a<1)的单调递增区间是(1,+∞).

查看答案和解析>>

同步练习册答案