精英家教网 > 高中数学 > 题目详情
5.过A(0,1),B(3,5)两点的直线的斜率是(  )
A.$\frac{4}{3}$B.$\frac{3}{4}$C.$-\frac{4}{3}$D.$-\frac{3}{4}$

分析 直接应用斜率公式求解.

解答 解:由斜率公式可得:
k=$\frac{5-1}{3-0}$=$\frac{4}{3}$
故选A

点评 本题主要考查直线的斜率公式,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知△ABC的顶点A(5,1),AB边上的中线CM所在的直线方程为2x-y-5=0,AC边上的高BH所在的直线方程为x-2y-5=0.求
(Ⅰ)AC所在的直线方程;
(Ⅱ)点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=$\left\{\begin{array}{l}{(3a+2)x-1,x≤1}\\{\frac{a}{x},x>1}\end{array}\right.$是R上的单调函数,则实数a的取值范围为$(-\frac{2}{3},-\frac{1}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知角α的终边经过点P(2,m)(m>0),且cosα=$\frac{2\sqrt{5}}{5}$,则m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图所示,在平行四边形ABCD中,AB=4,AD=3,E是边CD的中点,$\overrightarrow{DF}$=$\frac{1}{3}$$\overrightarrow{DA}$,若$\overrightarrow{AE}$•$\overrightarrow{BF}$=-4,则sin∠BAD=$\frac{\sqrt{15}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若圆(x-1)2+y2=25的弦AB被点P(2,1)平分,则直线AB的方程为(  )
A.2x+y-3=0B.x+y-3=0C.x-y-1=0D.2x-y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知动直线l的方程:cosα•(x-2)+sinα•(y+1)=1(α∈R),给出如下结论:
①动直线l恒过某一定点;
②存在不同的实数α1,α2,使相应的直线l1,l2平行;
③坐标平面上至少存在两个点都不在动直线l上;
④动直线l可表示坐标平面上除x=2,y=-1之外的所有直线;
⑤动直线l可表示坐标平面上的所有直线;
其中正确结论的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果函数y=sin(x+ϕ)的图象经过点$(\frac{π}{3},0)$,那么ϕ可以是(  )
A.0B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=ax2+bx+c(a>b>c)的图象经过点A(m1,f(m1))和点B(m2,f(m2)),f(1)=0,若a2+(f(m1)+f(m2)•a+f(m1)•f(m2)=0,则(  )
A.b≥0B.b<0C.3a+c≤0D.3a-c<0

查看答案和解析>>

同步练习册答案