精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)=lnx,其中a0.曲线y=fx)在点(1f1))处的切线与直线y=x+1垂直.

1)求函数fx)的单调区间;

2)求函数fx)在区间[1e]上的极值和最值.

【答案】1fx)的单调减区间为(02),增区间为[2,+∞);(2fx)的极小值为f2)=ln2,无极大值;最小值ln2,最大值1.

【解析】

1)先求导,由曲线在点处的切线与直线垂直可得,即可解得,再分别令,即可求解;

(2)由(1)可知fx)的极小值为f2),无极大值,再将极值与端点值比较求得最值即可.

1)由题,x0,

因为曲线在点处的切线与直线垂直,

所以,解得a=2,

所以,

0x2,令x2,

所以fx)的单调减区间为(0,2),增区间为[2,+∞)

2)由(1)可得fx)在(1,2)上递减,在(2,e)上递增,

fx)的极小值为f2)=ln2,无极大值;

又因为f1)=1,fe,f2)=ln2,

所以fx)的最小值为ln2,最大值为1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆)的左、右焦点分别为,过作垂直于轴的直线与椭圆在第一象限交于点,若,且.

(Ⅰ)求椭圆的方程;

(Ⅱ)是椭圆上位于直线两侧的两点.若直线过点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在抛物线上,则当点到点的距离与点到抛物线焦点距离之和取得最小值时,点的坐标为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市春节大酬宾,购物满100元可参加一次抽奖活动,规则如下:顾客将一个半径适当的小球放入如图所示的容器正上方的人口处,小球在自由落下的过程中,将3次遇到黑色障碍物,最后落入A袋或B袋中,顾客相应获得袋子里的奖品.已知小球每次遇到黑色障碍物时,向左向右下落的概率都为.若活动当天小明在该超市购物消费108元,按照活动规则,他可参加一次抽奖,则小明获得A袋中的奖品的概率为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题16分)某乡镇为了进行美丽乡村建设,规划在长为10千米的河流OC的一侧建一条观光带,观光带的前一部分为曲线段OAB,设曲线段OAB为函数(单位:千米)的图象,且曲线段的顶点为;观光带的后一部分为线段BC,如图所示.

(1)求曲线段OABC对应的函数的解析式;

(2)若计划在河流OC和观光带OABC之间新建一个如图所示的矩形绿化带MNPQ,绿化带由线段MQQPPN构成,其中点P在线段BC上.当OM长为多少时,绿化带的总长度最长?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱锥,一个正三棱柱的一个底面的三个顶点在正三棱锥的三条侧棱上,另一底面在正三棱锥的底面上,若正三棱锥的高为15,底面边长为12,内接正三棱柱的侧面积为120.

1)求三棱柱的高;

2)求棱柱的上底面截棱锥所得的小棱锥与原棱锥的侧面积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】乒乓球赛规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分。设在甲、乙的比赛中,每次发球,甲发球得1分的概率为,乙发球得1分的概率为,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.则开始第4次发球时,甲、乙的比分为1比2的概率为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过长期观测得到:在交通繁忙的时段内,某公路汽车的车流量(千辆/h)与汽车的平均速度之间的函数关系式为:

1)若要求在该段时间内车流量超过2千辆,则汽车在平均速度应在什么范围内?

2)在该时段内,若规定汽车平均速度不得超过,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5)[0.5,1)[4,4.5]分成9组,制成了如图所示的频率分布直方图.

)求直方图中a的值;

)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;

)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.

查看答案和解析>>

同步练习册答案