精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱柱的底面为菱形,且.

(1)证明:四边形为矩形;

(2)若与平面所成的角为,求二面角的余弦值.

【答案】(1)见解析(2)

【解析】试题分析:(1)由四棱柱性质可知四边形 为平行四边形,连接,设,连接.易证∴平面,∴.∵,∴ (2) 过点平面,垂足为,由已知可得点上,证明点与点重合,则平面,以为坐标原点,建立空间直角坐标系求出平面与平面的法向量,代入公式计算即可.

试题解析:

(1)证明:连接,设,连接.

,∴.

的中点,∴..

平面,∴.

,∴.

又四边形是平行四边形,则四边形为矩形.

(2)解:过点平面,垂足为,由已知可得点上,∴.

,则.

在菱形中,,∴.

∴点与点重合,则平面.

为坐标原点,建立空间直角坐标系.

.

.

设平面的法向量为,则 ,∴

,可得为平面的一个法向量.

同理可得平面的一个法向量为

.所以二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从高一年级随机选取100名学生,对他们期中考试的数学和语文成绩进行分析,成绩如图所示.

(Ⅰ)从这100名学生中随机选取一人,求该生数学和语文成绩均低于60分的概率;

(II)从语文成绩大于80分的学生中随机选取两人,记这两人中数学成绩高于80分的人数为,求的分布列和数学期望(

(Ill)试判断这100名学生数学成绩的方差与语文成绩的方差的大小.(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是正方形, 平面 分别是线段 的中点, .

求证: 平面

求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数fx)是奇函数,且满足f3-x=fx),f-1=3,数列{an}满足a1=1an=nan+1-an)(nN*),则fa36+fa37=(  )

A. B. C. 2D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,且满足Sn+n=2annN*).

1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;

2)若bn=nan+n,数列{bn}的前n项和为Tn,求满足不等式n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】襄阳市拟在2021年奥体中心落成后申办2026年湖北省省运会,据了解,目前武汉,宜昌,黄石等申办城市因市民担心赛事费用超支而准备相继退出,某机构为调查襄阳市市民对申办省运会的态度,选取某小区的100位居民调查结果统计如下:

支持

不支持

合计

年龄不大于50

60

年龄大于50

10

合计

80

100

1)根据已知数据,把表格数据填写完整;

2)能否在犯错误的概率不超过的前提下认为不同年龄与支持申办省运会无关?

附: , .

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量与尺寸之间近似满足关系式(为大于0的常数).现随机抽取6件合格产品,测得数据如下:

对数据作了初步处理,相关统计位的值如下表:

(1)根据所给数据,求关于的回归方程;

(2)按照某项指标测定,当产品质量与尺寸的比在区间内时为优等品.现从抽取的6件合格产品中再任选3件,记为取到优等品的件数,试求随机变量的分布列和期望.

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从高三抽出名学生参加数学竞赛,由成绩得到如下的频率分布直方图.试利用频率分布直方图求:

1)这名学生成绩的众数与中位数;

2)这名学生的平均成绩.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】研究变量得到一组样本数据,进行回归分析,有以下结论

①残差平方和越小的模型,拟合的效果越好;

②用相关指数来刻画回归效果,越小说明拟合效果越好;

③线性回归方程对应的直线至少经过其样本数据点中的一个点;

④若变量之间的相关系数为,则变量之间的负相关很强.

以上正确说法的个数是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案