精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,已知两点A(2,5),B(0,1),若点C满足
OC
=λ1
OA
+λ2
OB
(O为坐标原点),其中λ1、λ2∈R,且λ12=1,则点C的轨迹方程为
2x-y+1=0
2x-y+1=0
分析:由点C满足
OC
=λ1
OA
+λ2
OB
,其中λ1、λ2∈R,且λ12=1,知点C在直线AB上,故求出直线AB的方程即求出点C的轨迹方程.
解答:解:C点满足
OC
=λ1
OA
+λ2
OB
且λ1、λ2∈R,且λ12=1,
∴A、B、C三点共线.
∴C点的轨迹是直线AB
又A(2,5),B(0,1),
∴直线AB的方程为:
y-1
5-1
=
x-0
2-0
整理得2x-y+1=0
故C点的轨迹方程为2x-y+1=0
故答案为:2x-y+1=0.
点评:考查平面向量中三点共线的充要条件及知两点求直线的方程,是向量与解析几何综合运用的一道比较基本的题,难度较小,知识性较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为:pcos(θ-
π3
)=1
,M,N分别为曲线C与x轴,y轴的交点,则MN的中点P在平面直角坐标系中的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)设α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是
 
(写出所有正确命题的编号).
①存在这样的直线,既不与坐标轴平行又不经过任何整点
②如果k与b都是无理数,则直线y=kx+b不经过任何整点
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点
④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数
⑤存在恰经过一个整点的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,下列函数图象关于原点对称的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以点(1,0)为圆心,r为半径作圆,依次与抛物线y2=x交于A、B、C、D四点,若AC与BD的交点F恰好为抛物线的焦点,则r=
 

查看答案和解析>>

同步练习册答案