(本小题满分15分)如图所示,在直四棱柱中,, ,点是棱上一点.(Ⅰ)求证:面;(5分)
(Ⅱ)求证:;(5分)
(Ⅲ)试确定点的位置,使得平面平面. (5分)
:(Ⅰ)略 (Ⅱ) 略(Ⅲ) 点为棱的中点
(Ⅰ)证明:由直四棱柱,得,
所以是平行四边形,所以 (3分)
而,,所以面 …(5分)
(Ⅱ)证明:因为, 所以 ……(7分)
又因为,且,所以 ………… ……(9分)
而,所以 ……(10分)
(Ⅲ)当点为棱的中点时,平面平面… (11分)
取DC的中点N,,连结交于,连结.
因为N是DC中点,BD=BC,所以;又因为DC是面ABCD与面的交线,而面ABCD⊥面,所以………(13分)
又可证得,是的中点,所以BM∥ON且BM=ON,即BMON是平行四边形,所以BN∥OM,所以OM平面,因为OM?面DMC1,所以平面平面……(15分)
点评:本小题主要考查直线与平面的位置关系,考查空间想象能力、逻辑思维能力和运算能力。
科目:高中数学 来源:2012-2013学年福建省高三上学期期中理科数学试卷(解析版) 题型:解答题
(本小题满分15分)
已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)若,试分别解答以下两小题.
(ⅰ)若不等式对任意的恒成立,求实数的取值范围;
(ⅱ)若是两个不相等的正数,且,求证:.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省高三下学期3月联考理科数学 题型:解答题
(本小题满分15分).
已知、分别为椭圆:的
上、下焦点,其中也是抛物线:的焦点,
点是与在第二象限的交点,且。
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点P(1,3)和圆:,过点P的动直线与圆相交于不同的两点A,B,在线段AB取一点Q,满足:,(且)。求证:点Q总在某定直线上。
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省高三上学期第三次月考数学文卷 题型:解答题
(本小题满分15分)
如图已知,椭圆的左、右焦点分别为、,过的直线与椭圆相交于A、B两点。
(Ⅰ)若,且,求椭圆的离心率;
(Ⅱ)若求的最大值和最小值。
查看答案和解析>>
科目:高中数学 来源:2014届浙江省宁波市高一上学期期末考试数学 题型:解答题
(本小题满分15分)若函数在定义域内存在区间,满足在上的值域为,则称这样的函数为“优美函数”.
(Ⅰ)判断函数是否为“优美函数”?若是,求出;若不是,说明理由;
(Ⅱ)若函数为“优美函数”,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010-2011年江苏省高二下学期期中考试理数 题型:解答题
(本小题满分15分)在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题.求:
(1)第1次抽到理科题的概率;
(2)第1次和第2次都抽到理科题的概率;
(3)在第1次抽到理科题的条件下,第2次抽到文科题的概率
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com