分析 (Ⅰ)由题意列关于a,b,c的方程组,求解方程组得到a,b的值,则椭圆方程可求;
(Ⅱ)设BC所在直线方程为y=kx+b,联立直线方程和抛物线方程,化为关于x的一元二次方程,利用根与系数的关系求得B,C的横坐标的和与积,再分别写出过B,C的抛物线的切线方程,与抛物线方程联立后利用判别式等于0把斜率用点的横坐标表示,得到切线方程,联立两切线方程求出A的坐标,代入椭圆方程得到k,b的关系,再由弦长公式求出|BC|,由点到直线的距离公式求出A到BC的距离,代入面积公式,利用配方法求得S△ABC的最大值.
解答 解:(Ⅰ)由题意,$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{\frac{12}{{a}^{2}}+\frac{1}{{b}^{2}}=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a2=16,b2=4,
∴曲线C1的方程为$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$(y≤0);
(Ⅱ)设lBC:y=kx+b,联立$\left\{\begin{array}{l}{{x}^{2}=4y}\\{y=kx+b}\end{array}\right.$,得x2-4kx-4b=0.
则x1+x2=4k,x1x2=-4b,
AB:$y={k}_{1}(x-{x}_{1})+\frac{{{x}_{1}}^{2}}{4}$,代入x2=4y,得${x}^{2}-4{k}_{1}x+4{k}_{1}{x}_{1}-{{x}_{1}}^{2}=0$.
△=$16{{k}_{1}}^{2}-16{k}_{1}{x}_{1}+4{{x}_{1}}^{2}=0$,∴${k}_{1}=\frac{1}{2}{x}_{1}$,
则AB:$y=\frac{1}{2}{x}_{1}x-\frac{{{x}_{1}}^{2}}{4}$.
同理AC:$y=\frac{1}{2}{x}_{2}x-\frac{{{x}_{2}}^{2}}{4}$,得A($\frac{1}{2}({x}_{1}+{x}_{2}),\frac{1}{4}{x}_{1}{x}_{2}$)=(2k,-b),
∴$\frac{4{k}^{2}}{16}+\frac{{b}^{2}}{4}=1$,即k2+b2=4(0≤b≤2),
点A到BC的距离d=$\frac{|-2{k}^{2}-2b|}{\sqrt{1+{k}^{2}}}$,$|{x}_{1}-{x}_{2}|=\sqrt{16{k}^{2}+16b}$,
|BC|=$\sqrt{1+{k}^{2}}|{x}_{1}-{x}_{2}|$,
∴S△ABC=$\frac{1}{2}\sqrt{1+{k}^{2}}|{x}_{1}-{x}_{2}|•\frac{|-2{k}^{2}-2b|}{\sqrt{1+{k}^{2}}}$
=$\sqrt{16{k}^{2}+16b}|{k}^{2}+b|=4({k}^{2}+b)^{\frac{3}{2}}$=$4(4-{b}^{2}+b)^{\frac{3}{2}}=4[-(b-\frac{1}{2})^{2}+\frac{17}{4}]^{\frac{3}{2}}≤\frac{17\sqrt{17}}{2}$.
当b=$\frac{1}{2}$,k=$±\frac{\sqrt{15}}{2}$时取等号.
点评 本题考查椭圆的简单性质,考查了直线与抛物线的位置关系的应用,训练了学生灵活处理问题和解决问题的能力,该题灵活性强,运算量大,是高考试卷中的压轴题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,1) | B. | )(1,2 ) | C. | ( 2,3 ) | D. | ( 3,4 ) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ${x}^{2}-\frac{{y}^{2}}{4}=1$ | B. | $\frac{{x}^{2}}{4}$-y2=1 | C. | x2-$\frac{{y}^{2}}{2}$=1 | D. | $\frac{{x}^{2}}{2}$-y2=1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com