【题目】已知椭圆E:的离心率是,,分别为椭圆E的左右顶点,B为上顶点,的面积为直线l过点且与椭圆E交于P,Q两点.
求椭圆E的标准方程;
求面积的最大值;
设直线与直线交于点N,证明:点N在定直线上,并写出该直线方程.
【答案】(1)(2)(3)见证明
【解析】
根据离心率和三角形的面积即可求出,,
分两种情况,当PQ斜率不存在时,,当直线PQ的斜率存在时,设PQ的方程为,,由此利用根的判别式、韦达定理、弦长公式、,函数的性质,结合已知条件能求出的面积的最大值.
分两种情况,PQ斜率不存在时,易知,当直线PQ的斜率存在时,直线的方程为,直线的方程为,即可整理化简可得,解得即可.
解:由题意知,
,即,
的面积为2,
,
解得,,
椭圆C的标准方程为,
斜率不存在时,易知,,此时,
当直线PQ的斜率存在时,设PQ的方程为,,
设,,
将代入,整理可得,
,,
,
,
令,,
,
故面积的最大值
证明斜率不存在时,易知,
当直线PQ的斜率存在时,直线的方程为,直线的方程为,
,
,
解得,即N点的横坐标为4,
综上所述,点N在定直线上.
科目:高中数学 来源: 题型:
【题目】三棱锥P-A BC的四个顶点都在球D的表面上,PA⊥平面ABC,AB⊥BC,PA =3,AB=BC=2,则球O的表面积为( )
A.13π B.17π C.52π D.68π
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我校举行“两城同创”的知识竞赛答题,高一年级共有1200名学生参加了这次竞赛.为了解竞赛成绩情况,从中抽取了100名学生的成绩进行统计.其中成绩分组区间为,,,,,其频率分布直方图如图所示,请你解答下列问题:
(1)求的值;
(2)若成绩不低于90分的学生就能获奖,问所有参赛学生中获奖的学生约为多少人;
(3)根据频率分布直方图,估计这次平均分(用组中值代替各组数据的平均值).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为( )
A.0.35B.0.25C.0.20D.0.15
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知椭圆C:的左右焦点分别为,,直线l:与椭圆C交于A,B两点为坐标原点.
若直线l过点,且十,求直线l的方程;
若以AB为直径的圆过点O,点P是线段AB上的点,满足,求点P的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f1(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的一段图象过点(0,1),如图所示.
(1)求函数f1(x)的表达式;
(2)将函数y=f1(x)的图象向右平移个单位,得函数y=f2(x)的图象,求y=f2(x)的最大值,并求出此时自变量x的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分儿口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探. 由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料见如表:
(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为,求,并估计的预报值;
(Ⅱ)现准备勘探新井,若通过1、3、5、7号井计算出的的值(精确到0.01)相比于(Ⅰ)中的值之差不超过10%,则使用位置最接近的已有旧井,否则在新位置打开,请判断可否使用旧井?
(参考公式和计算结果:)
(Ⅲ)设出油量与勘探深度的比值不低于20的勘探并称为优质井,那么在原有井号1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是优质井的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com