精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在多面体ABCDE中,△BCD是边长为2的正三角形,AE∥DB,AE⊥DE,2AE=BD,DE=1,面ABDE⊥面BCD,F是CE的中点.
(Ⅰ)求证:BF⊥CD;
(Ⅱ)求二面角C﹣BF﹣D的余弦值.

【答案】解:(Ⅰ)证明:如图,取BD中点O,连接OC,OA,
∵△BCD为正三角形,∴OC⊥BD,
∵面ABDE⊥面BCD,且面ABDE∩面BCD=BD,
∴OC⊥面ABDE,则OC⊥OA,
又AE∥DB,AE⊥DE,AE=
∴OA⊥OD.
以O为坐标原点,分别以OC、OD、OA所在直线为x、y、z轴建立空间直角坐标系,
则B(0,﹣1,0),C( ,0,0),D(0,1,0),E(0,1,1),F( ).

,∴ ,即BF⊥CD;
(Ⅱ)解:
设平面BCF的一个法向量为
,得 ,取x1=1,得
设平面BFD的一个法向量
,得 ,取x2=1,得
∴cos< >= =
∴二面角C﹣BF﹣D的余弦值为
【解析】(Ⅰ)取BD中点O,连接OC,OA,由题意可证OC、OD、OA两两互相垂直.以O为坐标原点,分别以OC、OD、OA所在直线为x、y、z轴建立空间直角坐标系,求出B,C,D,E,F的坐标,得到 的坐标,由 ,可得 ,即BF⊥CD;(Ⅱ)分别求出平面BCF与平面BFD的一个法向量,利用两法向量所成角的余弦值可得二面角C﹣BF﹣D的余弦值.
【考点精析】本题主要考查了直线与平面垂直的性质的相关知识点,需要掌握垂直于同一个平面的两条直线平行才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD中,AP⊥平面PCDADBCABBCADEF分别为线段ADPC的中点.

(1)求证:AP∥平面BEF

(2)求证:BE⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F在半圆O上,点C在直径AB上,且OF⊥AB,设AC=a,BC=b,则该图形可以完成的无字证明为(
A. (a>0,b>0)
B.a2+b2≥2ab(a>0,b>0)
C. (a>0,b>0)
D. (a>0,b>0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为F,过F作平行于x轴的直线交抛物线于A,B两点(AB的左侧),若△AOB的面积为2.

(1)求抛物线C的方程;

(2)P是抛物线C的准线上一点,Q是抛物线上的一点,若PF⊥QF,求证:直线PQ与抛物线相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣1|﹣|x﹣3|.
(Ⅰ)解不等式f(x)≥1;
(Ⅱ)当﹣9≤x≤4时,不等式f(x)<a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正实数x,y满足 +2y﹣2=lnx+lny,则xy=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC 中,角A,B,C 所对的边分别为a,b,c,已知bsinA= acosB.
(1)求角B 的值;
(2)若cosAsinC= ,求角A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥P﹣ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD中点,PA⊥底面ABCD,PA=2.

(1)证明:平面PBE⊥平面PAB;
(2)求直线PC与平面PBE所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)x33xyf(x)上一点P(1,-2),过点P作直线l.

(1)求使直线lyf(x)相切且以P为切点的直线方程;

(2)求使直线lyf(x)相切且切点异于P的直线方程.

查看答案和解析>>

同步练习册答案